StatsForecast's Models
Automatic Forecasting
Automatic forecasting tools search for the best parameters and select the best possible model for a series of time series. These tools are useful for large collections of univariate time series.
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
AutoARIMA | ✅ | ✅ | ✅ | ✅ |
AutoETS | ✅ | ✅ | ✅ | ✅ |
AutoCES | ✅ | ✅ | ✅ | ✅ |
AutoTheta | ✅ | ✅ | ✅ | ✅ |
ARIMA Family
These models exploit the existing autocorrelations in the time series.
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
ARIMA | ✅ | ✅ | ✅ | ✅ |
AutoRegressive | ✅ | ✅ | ✅ | ✅ |
Theta Family
Fit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
Theta | ✅ | ✅ | ✅ | ✅ |
OptimizedTheta | ✅ | ✅ | ✅ | ✅ |
DynamicTheta | ✅ | ✅ | ✅ | ✅ |
DynamicOptimizedTheta | ✅ | ✅ | ✅ | ✅ |
Multiple Seasonalities
Suited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
MSTL | ✅ | ✅ | ✅ | ✅ |
GARCH and ARCH Models
Suited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH.
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
GARCH | ✅ | ✅ | ✅ | ✅ |
ARCH | ✅ | ✅ | ✅ | ✅ |
Baseline Models
Classical models for establishing baseline.
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
HistoricAverage | ✅ | ✅ | ✅ | ✅ |
Naive | ✅ | ✅ | ✅ | ✅ |
RandomWalkWithDrift | ✅ | ✅ | ✅ | ✅ |
SeasonalNaive | ✅ | ✅ | ✅ | ✅ |
WindowAverage | ✅ | |||
SeasonalWindowAverage | ✅ |
Exponential Smoothing
Uses a weighted average of all past observations where the weights
decrease exponentially into the past. Suitable for data with clear trend
and/or seasonality. Use the SimpleExponential
family for data with no
clear trend or seasonality.
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
SimpleExponentialSmoothing | ✅ | |||
SimpleExponentialSmoothingOptimized | ✅ | |||
SeasonalExponentialSmoothing | ✅ | |||
SeasonalExponentialSmoothingOptimized | ✅ | |||
Holt | ✅ | ✅ | ✅ | ✅ |
HoltWinters | ✅ | ✅ | ✅ | ✅ |
Sparse or Intermittent
Suited for series with very few non-zero observations
Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
---|---|---|---|---|
ADIDA | ✅ | |||
CrostonClassic | ✅ | |||
CrostonOptimized | ✅ | |||
CrostonSBA | ✅ | |||
IMAPA | ✅ | |||
TSB | ✅ |