utilsforecast
Forecasting utilities
Install
PyPI
Conda
How to use
Generate synthetic data
unique_id | ds | y | |
---|---|---|---|
0 | 0 | 2000-01-01 | 0.422133 |
1 | 0 | 2000-01-02 | 1.501407 |
2 | 0 | 2000-01-03 | 2.568495 |
3 | 0 | 2000-01-04 | 3.529085 |
4 | 0 | 2000-01-05 | 4.481929 |
… | … | … | … |
481 | 2 | 2000-06-11 | 163.914625 |
482 | 2 | 2000-06-12 | 166.018479 |
483 | 2 | 2000-06-13 | 160.839176 |
484 | 2 | 2000-06-14 | 162.679603 |
485 | 2 | 2000-06-15 | 165.089288 |
Plotting
Preprocessing
unique_id | ds | y | |
---|---|---|---|
213 | 0 | 2000-08-01 | 18.543147 |
214 | 0 | 2000-08-02 | 19.941764 |
216 | 0 | 2000-08-04 | 21.968733 |
220 | 0 | 2000-08-08 | 19.091509 |
221 | 0 | 2000-08-09 | 20.220739 |
unique_id | ds | y | |
---|---|---|---|
0 | 0 | 2000-08-01 | 18.543147 |
1 | 0 | 2000-08-02 | 19.941764 |
2 | 0 | 2000-08-03 | NaN |
3 | 0 | 2000-08-04 | 21.968733 |
4 | 0 | 2000-08-05 | NaN |
5 | 0 | 2000-08-06 | NaN |
6 | 0 | 2000-08-07 | NaN |
7 | 0 | 2000-08-08 | 19.091509 |
8 | 0 | 2000-08-09 | 20.220739 |
Evaluating
unique_id | metric | seas_naive | rand_model | |
---|---|---|---|---|
0 | 0 | mape | 0.024139 | 0.440173 |
1 | 1 | mape | 0.054259 | 0.278123 |
2 | 2 | mape | 0.042642 | 0.480316 |
3 | 0 | mase | 0.907149 | 16.418014 |
4 | 1 | mase | 0.991635 | 6.404254 |
5 | 2 | mase | 1.013596 | 11.365040 |