FEDformer
The FEDformer model tackles the challenge of finding reliable dependencies on intricate temporal patterns of long-horizon forecasting.
The architecture has the following distinctive features: - In-built progressive decomposition in trend and seasonal components based on a moving average filter. - Frequency Enhanced Block and Frequency Enhanced Attention to perform attention in the sparse representation on basis such as Fourier transform. - Classic encoder-decoder proposed by Vaswani et al. (2017) with a multi-head attention mechanism.
The FEDformer model utilizes a three-component approach to define its embedding: - It employs encoded autoregressive features obtained from a convolution network. - Absolute positional embeddings obtained from calendar features are utilized.
1. Auxiliary functions
source
AutoCorrelationLayer
AutoCorrelationLayer (correlation, hidden_size, n_head, d_keys=None, d_values=None)
Auto Correlation Layer
source
LayerNorm
LayerNorm (channels)
Special designed layernorm for the seasonal part
source
SeriesDecomp
SeriesDecomp (kernel_size)
Series decomposition block
source
MovingAvg
MovingAvg (kernel_size, stride)
Moving average block to highlight the trend of time series
source
Decoder
Decoder (layers, norm_layer=None, projection=None)
FEDformer decoder
source
DecoderLayer
DecoderLayer (self_attention, cross_attention, hidden_size, c_out, conv_hidden_size=None, MovingAvg=25, dropout=0.1, activation='relu')
FEDformer decoder layer with the progressive decomposition architecture
source
Encoder
Encoder (attn_layers, conv_layers=None, norm_layer=None)
FEDformer encoder
source
EncoderLayer
EncoderLayer (attention, hidden_size, conv_hidden_size=None, MovingAvg=25, dropout=0.1, activation='relu')
FEDformer encoder layer with the progressive decomposition architecture
source
FourierCrossAttention
FourierCrossAttention (in_channels, out_channels, seq_len_q, seq_len_kv, modes=64, mode_select_method='random', activation='tanh', policy=0)
Fourier Cross Attention layer
source
FourierBlock
FourierBlock (in_channels, out_channels, seq_len, modes=0, mode_select_method='random')
Fourier block
source
get_frequency_modes
get_frequency_modes (seq_len, modes=64, mode_select_method='random')
Get modes on frequency domain: ‘random’ for sampling randomly ‘else’ for sampling the lowest modes;
2. Model
source
FEDformer
FEDformer (h:int, input_size:int, stat_exog_list=None, hist_exog_list=None, futr_exog_list=None, decoder_input_size_multiplier:float=0.5, version:str='Fourier', modes:int=64, mode_select:str='random', hidden_size:int=128, dropout:float=0.05, n_head:int=8, conv_hidden_size:int=32, activation:str='gelu', encoder_layers:int=2, decoder_layers:int=1, MovingAvg_window:int=25, loss=MAE(), valid_loss=None, max_steps:int=5000, learning_rate:float=0.0001, num_lr_decays:int=-1, early_stop_patience_steps:int=-1, start_padding_enabled=False, val_check_steps:int=100, batch_size:int=32, valid_batch_size:Optional[int]=None, windows_batch_size=1024, inference_windows_batch_size=1024, step_size:int=1, scaler_type:str='identity', random_seed:int=1, num_workers_loader:int=0, drop_last_loader:bool=False, optimizer=None, optimizer_kwargs=None, lr_scheduler=None, lr_scheduler_kwargs=None, **trainer_kwargs)
*FEDformer
The FEDformer model tackles the challenge of finding reliable dependencies on intricate temporal patterns of long-horizon forecasting.
The architecture has the following distinctive features: - In-built progressive decomposition in trend and seasonal components based on a moving average filter. - Frequency Enhanced Block and Frequency Enhanced Attention to perform attention in the sparse representation on basis such as Fourier transform. - Classic encoder-decoder proposed by Vaswani et al. (2017) with a multi-head attention mechanism.
The FEDformer model utilizes a three-component approach to define its embedding: - It employs encoded autoregressive features obtained from a convolution network. - Absolute positional embeddings obtained from calendar features are utilized.
Parameters:
h
: int, forecast horizon.
input_size
: int,
maximum sequence length for truncated train backpropagation. Default -1
uses all history.
futr_exog_list
: str list, future exogenous
columns.
hist_exog_list
: str list, historic exogenous columns.
stat_exog_list
: str list, static exogenous columns.
decoder_input_size_multiplier
: float = 0.5, .
version
: str =
‘Fourier’, version of the model.
modes
: int = 64, number of modes
for the Fourier block.
mode_select
: str = ‘random’, method to
select the modes for the Fourier block.
hidden_size
: int=128,
units of embeddings and encoders.
dropout
: float (0, 1), dropout
throughout Autoformer architecture.
n_head
: int=8, controls number
of multi-head’s attention.
conv_hidden_size
: int=32, channels of
the convolutional encoder.
activation
: str=GELU
, activation from
[‘ReLU’, ‘Softplus’, ‘Tanh’, ‘SELU’, ‘LeakyReLU’, ‘PReLU’, ‘Sigmoid’,
‘GELU’].
encoder_layers
: int=2, number of layers for the TCN
encoder.
decoder_layers
: int=1, number of layers for the MLP
decoder.
MovingAvg_window
: int=25, window size for the moving
average filter.
loss
: PyTorch module, instantiated train loss
class from losses
collection.
valid_loss
: PyTorch module, instantiated validation loss class from
losses
collection.
max_steps
: int=1000, maximum number of training steps.
learning_rate
: float=1e-3, Learning rate between (0, 1).
num_lr_decays
: int=-1, Number of learning rate decays, evenly
distributed across max_steps.
early_stop_patience_steps
: int=-1,
Number of validation iterations before early stopping.
val_check_steps
: int=100, Number of training steps between every
validation loss check.
batch_size
: int=32, number of different
series in each batch.
valid_batch_size
: int=None, number of
different series in each validation and test batch, if None uses
batch_size.
windows_batch_size
: int=1024, number of windows to
sample in each training batch, default uses all.
inference_windows_batch_size
: int=1024, number of windows to sample in
each inference batch.
start_padding_enabled
: bool=False, if True,
the model will pad the time series with zeros at the beginning, by input
size.
scaler_type
: str=‘robust’, type of scaler for temporal
inputs normalization see temporal
scalers.
random_seed
: int=1, random_seed for pytorch initializer and numpy
generators.
num_workers_loader
: int=os.cpu_count(), workers to be
used by TimeSeriesDataLoader
.
drop_last_loader
: bool=False, if
True TimeSeriesDataLoader
drops last non-full batch.
alias
: str,
optional, Custom name of the model.
optimizer
: Subclass of
‘torch.optim.Optimizer’, optional, user specified optimizer instead of
the default choice (Adam).
optimizer_kwargs
: dict, optional, list
of parameters used by the user specified optimizer
.
lr_scheduler
: Subclass of ‘torch.optim.lr_scheduler.LRScheduler’,
optional, user specified lr_scheduler instead of the default choice
(StepLR).
lr_scheduler_kwargs
: dict, optional, list of parameters
used by the user specified lr_scheduler
.
**trainer_kwargs
: int,
keyword trainer arguments inherited from PyTorch Lighning’s
trainer.
*
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import FEDformer
from neuralforecast.utils import AirPassengersPanel, augment_calendar_df
AirPassengersPanel, calendar_cols = augment_calendar_df(df=AirPassengersPanel, freq='M')
Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test
model = FEDformer(h=12,
input_size=24,
modes=64,
hidden_size=64,
conv_hidden_size=128,
n_head=8,
loss=MAE(),
futr_exog_list=calendar_cols,
scaler_type='robust',
learning_rate=1e-3,
max_steps=500,
batch_size=2,
windows_batch_size=32,
val_check_steps=50,
early_stop_patience_steps=2)
nf = NeuralForecast(
models=[model],
freq='M',
)
nf.fit(df=Y_train_df, static_df=None, val_size=12)
forecasts = nf.predict(futr_df=Y_test_df)
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
if model.loss.is_distribution_output:
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['FEDformer-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:],
y1=plot_df['FEDformer-lo-90'][-12:].values,
y2=plot_df['FEDformer-hi-90'][-12:].values,
alpha=0.4, label='level 90')
plt.grid()
plt.legend()
plt.plot()
else:
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['FEDformer'], c='blue', label='Forecast')
plt.legend()
plt.grid()