Skip to main content
Kolmogorov-Arnold Networks (KANs) are an alternative to Multi-Layer Perceptrons (MLPs). This model uses KANs similarly as our MLP model. References Figure 1. KAN compared to MLP. Figure 1. KAN compared to MLP.

1. KAN

KAN

KAN(
    h,
    input_size,
    grid_size=5,
    spline_order=3,
    scale_noise=0.1,
    scale_base=1.0,
    scale_spline=1.0,
    enable_standalone_scale_spline=True,
    grid_eps=0.02,
    grid_range=[-1, 1],
    n_hidden_layers=1,
    hidden_size=512,
    stat_exog_list=None,
    hist_exog_list=None,
    futr_exog_list=None,
    exclude_insample_y=False,
    loss=MAE(),
    valid_loss=None,
    max_steps=1000,
    learning_rate=0.001,
    num_lr_decays=-1,
    early_stop_patience_steps=-1,
    val_check_steps=100,
    batch_size=32,
    valid_batch_size=None,
    windows_batch_size=1024,
    inference_windows_batch_size=-1,
    start_padding_enabled=False,
    training_data_availability_threshold=0.0,
    step_size=1,
    scaler_type="identity",
    random_seed=1,
    drop_last_loader=False,
    alias=None,
    optimizer=None,
    optimizer_kwargs=None,
    dataloader_kwargs=None,
    **trainer_kwargs
)
Bases: BaseModel KAN Simple Kolmogorov-Arnold Network (KAN). This network uses the Kolmogorov-Arnold approximation theorem, where splines are learned to approximate more complex functions. Unlike the MLP, the non-linear function are learned at the edges, and the nodes simply sum the different learned functions. Parameters:
NameTypeDescriptionDefault
hintforecast horizon.required
input_sizeintconsidered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].required
grid_sizeintnumber of intervals used by the splines to approximate the function.5
spline_orderintorder of the B-splines.3
scale_noisefloatregularization coefficient for the splines.0.1
scale_basefloatscaling coefficient for the base function.1.0
scale_splinefloatscaling coefficient for the splines.1.0
enable_standalone_scale_splineboolwhether each spline is scaled individually.True
grid_epsfloatused for numerical stability.0.02
grid_rangelistrange of the grid used for spline approximation.[-1, 1]
n_hidden_layersintnumber of hidden layers for the KAN.1
hidden_sizeint or listnumber of units for each hidden layer of the KAN. If an integer, all hidden layers will have the same size. Use a list to specify the size of each hidden layer.512
stat_exog_liststr liststatic exogenous columns.None
hist_exog_liststr listhistoric exogenous columns.None
futr_exog_liststr listfuture exogenous columns.None
exclude_insample_yboolthe model skips the autoregressive features y[t-input_size:t] if True.False
lossPyTorch moduleinstantiated train loss class from losses collection.MAE()
valid_lossPyTorch moduleinstantiated valid loss class from losses collection.None
max_stepsintmaximum number of training steps.1000
learning_ratefloatLearning rate between (0, 1).0.001
num_lr_decaysintNumber of learning rate decays, evenly distributed across max_steps.-1
early_stop_patience_stepsintNumber of validation iterations before early stopping.-1
val_check_stepsintNumber of training steps between every validation loss check.100
batch_sizeintnumber of different series in each batch.32
valid_batch_sizeintnumber of different series in each validation and test batch, if None uses batch_size.None
windows_batch_sizeintnumber of windows to sample in each training batch, default uses all.1024
inference_windows_batch_sizeintnumber of windows to sample in each inference batch, -1 uses all.-1
start_padding_enabledboolif True, the model will pad the time series with zeros at the beginning, by input size.False
training_data_availability_thresholdUnion[float, List[float]]minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior).0.0
step_sizeintstep size between each window of temporal data.1
scaler_typestrtype of scaler for temporal inputs normalization see temporal scalers.‘identity’
random_seedintrandom_seed for pytorch initializer and numpy generators.1
drop_last_loaderboolif True TimeSeriesDataLoader drops last non-full batch.False
aliasstroptional, Custom name of the model.None
optimizerSubclass of ‘torch.optim.Optimizer’optional, user specified optimizer instead of the default choice (Adam).None
optimizer_kwargsdictoptional, list of parameters used by the user specified optimizer.None
dataloader_kwargsdictoptional, list of parameters passed into the PyTorch Lightning dataloader by the TimeSeriesDataLoader.None
**trainer_kwargsintkeyword trainer arguments inherited from PyTorch Lighning’s trainer.

KAN.fit

fit(
    dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None
)
Fit. The fit method, optimizes the neural network’s weights using the initialization parameters (learning_rate, windows_batch_size, …) and the loss function as defined during the initialization. Within fit we use a PyTorch Lightning Trainer that inherits the initialization’s self.trainer_kwargs, to customize its inputs, see PL’s trainer arguments. The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library. By default the model is not saving training checkpoints to protect disk memory, to get them change enable_checkpointing=True in __init__. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
val_sizeintValidation size for temporal cross-validation.0
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
test_sizeintTest size for temporal cross-validation.0
Returns:
TypeDescription
None

KAN.predict

predict(
    dataset,
    test_size=None,
    step_size=1,
    random_seed=None,
    quantiles=None,
    h=None,
    explainer_config=None,
    **data_module_kwargs
)
Predict. Neural network prediction with PL’s Trainer execution of predict_step. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
test_sizeintTest size for temporal cross-validation.None
step_sizeintStep size between each window.1
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
quantileslistTarget quantiles to predict.None
hintPrediction horizon, if None, uses the model’s fitted horizon. Defaults to None.None
explainer_configdictconfiguration for explanations.None
**data_module_kwargsdictPL’s TimeSeriesDataModule args, see documentation.
Returns:
TypeDescription
None

Usage Example

import pandas as pd
import matplotlib.pyplot as plt

from neuralforecast import NeuralForecast
from neuralforecast.models import KAN
from neuralforecast.losses.pytorch import DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test

fcst = NeuralForecast(
    models=[
            KAN(h=12,
                input_size=24,
                loss = DistributionLoss(distribution="Normal"),
                max_steps=100,
                scaler_type='standard',
                futr_exog_list=['y_[lag12]'],
                hist_exog_list=None,
                stat_exog_list=['airline1'],
                ),     
    ],
    freq='ME'
)
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic)
forecasts = fcst.predict(futr_df=Y_test_df)

# Plot quantile predictions
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['KAN-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:], 
                 y1=plot_df['KAN-lo-90'][-12:].values,
                 y2=plot_df['KAN-hi-90'][-12:].values,
                 alpha=0.4, label='level 90')
plt.legend()
plt.grid()

2. Auxiliary functions

KANLinear

KANLinear(
    in_features,
    out_features,
    grid_size=5,
    spline_order=3,
    scale_noise=0.1,
    scale_base=1.0,
    scale_spline=1.0,
    enable_standalone_scale_spline=True,
    base_activation=torch.nn.SiLU,
    grid_eps=0.02,
    grid_range=[-1, 1],
)
Bases: Module KANLinear