TCN
For long time in deep learning, sequence modelling was synonymous with recurrent networks, yet several papers have shown that simple convolutional architectures can outperform canonical recurrent networks like LSTMs by demonstrating longer effective memory. By skipping temporal connections the causal convolution filters can be applied to larger time spans while remaining computationally efficient.
The predictions are obtained by transforming the hidden states into contexts , that are decoded and adapted into through MLPs.
where , is the hidden state for time , is the input at time and is the hidden state of the previous layer at , are static exogenous inputs, historic exogenous, are future exogenous available at the time of the prediction.
References
-van den Oord, A., Dieleman, S., Zen, H., Simonyan,
K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. W., &
Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio.
Computing Research Repository, abs/1609.03499. URL:
http://arxiv.org/abs/1609.03499.
arXiv:1609.03499.
-Shaojie Bai,
Zico Kolter, Vladlen Koltun. (2018). An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling. Computing
Research Repository, abs/1803.01271. URL:
https://arxiv.org/abs/1803.01271.
source
TCN
TCN (h:int, input_size:int=-1, inference_input_size:int=-1, kernel_size:int=2, dilations:List[int]=[1, 2, 4, 8, 16], encoder_hidden_size:int=200, encoder_activation:str='ReLU', context_size:int=10, decoder_hidden_size:int=200, decoder_layers:int=2, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, loss=MAE(), valid_loss=None, max_steps:int=1000, learning_rate:float=0.001, num_lr_decays:int=-1, early_stop_patience_steps:int=-1, val_check_steps:int=100, batch_size:int=32, valid_batch_size:Optional[int]=None, scaler_type:str='robust', random_seed:int=1, num_workers_loader=0, drop_last_loader=False, optimizer=None, optimizer_kwargs=None, lr_scheduler=None, lr_scheduler_kwargs=None, **trainer_kwargs)
*TCN
Temporal Convolution Network (TCN), with MLP decoder. The historical encoder uses dilated skip connections to obtain efficient long memory, while the rest of the architecture allows for future exogenous alignment.
Parameters:
h
: int, forecast horizon.
input_size
: int,
maximum sequence length for truncated train backpropagation. Default -1
uses all history.
inference_input_size
: int, maximum sequence
length for truncated inference. Default -1 uses all history.
kernel_size
: int, size of the convolving kernel.
dilations
: int
list, ontrols the temporal spacing between the kernel points; also known
as the à trous algorithm.
encoder_hidden_size
: int=200, units for
the TCN’s hidden state size.
encoder_activation
: str=tanh
, type
of TCN activation from tanh
or relu
.
context_size
: int=10,
size of context vector for each timestamp on the forecasting window.
decoder_hidden_size
: int=200, size of hidden layer for the MLP
decoder.
decoder_layers
: int=2, number of layers for the MLP
decoder.
futr_exog_list
: str list, future exogenous columns.
hist_exog_list
: str list, historic exogenous columns.
stat_exog_list
: str list, static exogenous columns.
loss
:
PyTorch module, instantiated train loss class from losses
collection.
max_steps
: int=1000, maximum number of training steps.
learning_rate
: float=1e-3, Learning rate between (0, 1).
valid_batch_size
: int=None, number of different series in each
validation and test batch.
num_lr_decays
: int=-1, Number of
learning rate decays, evenly distributed across max_steps.
early_stop_patience_steps
: int=-1, Number of validation iterations
before early stopping.
val_check_steps
: int=100, Number of
training steps between every validation loss check.
batch_size
:
int=32, number of differentseries in each batch.
scaler_type
:
str=‘robust’, type of scaler for temporal inputs normalization see
temporal
scalers.
random_seed
: int=1, random_seed for pytorch initializer and numpy
generators.
num_workers_loader
: int=os.cpu_count(), workers to be
used by TimeSeriesDataLoader
.
drop_last_loader
: bool=False, if
True TimeSeriesDataLoader
drops last non-full batch.
alias
: str,
optional, Custom name of the model.
optimizer
: Subclass of
‘torch.optim.Optimizer’, optional, user specified optimizer instead of
the default choice (Adam).
optimizer_kwargs
: dict, optional, list
of parameters used by the user specified optimizer
.
lr_scheduler
: Subclass of ‘torch.optim.lr_scheduler.LRScheduler’,
optional, user specified lr_scheduler instead of the default choice
(StepLR).
lr_scheduler_kwargs
: dict, optional, list of parameters
used by the user specified lr_scheduler
.
**trainer_kwargs
: int, keyword trainer arguments inherited from
PyTorch Lighning’s
trainer.
*
TCN.fit
TCN.fit (dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None)
*Fit.
The fit
method, optimizes the neural network’s weights using the
initialization parameters (learning_rate
, batch_size
, …) and the
loss
function as defined during the initialization. Within fit
we
use a PyTorch Lightning Trainer
that inherits the initialization’s
self.trainer_kwargs
, to customize its inputs, see PL’s trainer
arguments.
The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library.
By default the model
is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True
in
__init__
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
val_size
: int, validation size for temporal cross-validation.
test_size
: int, test size for temporal cross-validation.
random_seed
: int=None, random_seed for pytorch initializer and numpy
generators, overwrites model.__init__’s.
*
TCN.predict
TCN.predict (dataset, step_size=1, random_seed=None, **data_module_kwargs)
*Predict.
Neural network prediction with PL’s Trainer
execution of
predict_step
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
step_size
: int=1, Step size between each window.
random_seed
:
int=None, random_seed for pytorch initializer and numpy generators,
overwrites model.__init__’s.
**data_module_kwargs
: PL’s
TimeSeriesDataModule args, see
documentation.*
Usage Example
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import TCN
from neuralforecast.losses.pytorch import GMM, MQLoss, DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test
fcst = NeuralForecast(
models=[TCN(h=12,
input_size=-1,
#loss=DistributionLoss(distribution='Normal', level=[80, 90]),
loss=GMM(n_components=7, return_params=True, level=[80,90]),
learning_rate=5e-4,
kernel_size=2,
dilations=[1,2,4,8,16],
encoder_hidden_size=128,
context_size=10,
decoder_hidden_size=128,
decoder_layers=2,
max_steps=500,
scaler_type='robust',
futr_exog_list=['y_[lag12]'],
hist_exog_list=None,
stat_exog_list=['airline1'],
)
],
freq='M'
)
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic)
forecasts = fcst.predict(futr_df=Y_test_df)
# Plot quantile predictions
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['TCN-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:],
y1=plot_df['TCN-lo-90'][-12:].values,
y2=plot_df['TCN-hi-90'][-12:].values,
alpha=0.4, label='level 90')
plt.legend()
plt.grid()
plt.plot()