TemporalNorm module into any neural forecast
architecture, the module normalizes inputs into the network’s
non-linearities operating range and recomposes its output’s scales
through a global skip connection, improving accuracy and training
robustness. HINT ensures the forecast coherence via bootstrap sample
reconciliation that restores the aggregation constraints into its base
samples.
References
- Kin G. Olivares, David Luo, Cristian Challu, Stefania La Vattiata, Max Mergenthaler, Artur Dubrawski (2023). “HINT: Hierarchical Mixture Networks For Coherent Probabilistic Forecasting”. Neural Information Processing Systems, submitted. Working Paper version available at arxiv.
- Kin G. Olivares, O. Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei Cao, Lee Dicker (2022).”Probabilistic Hierarchical Forecasting with Deep Poisson Mixtures”. International Journal Forecasting, accepted paper available at arxiv.
- Kin G. Olivares, Federico Garza, David Luo, Cristian Challu, Max Mergenthaler, Souhaib Ben Taieb, Shanika Wickramasuriya, and Artur Dubrawski (2022). “HierarchicalForecast: A reference framework for hierarchical forecasting in python”. Journal of Machine Learning Research, submitted, abs/2207.03517, 2022b.

1. HINT
HINT
TemporalNorm module into any neural forecast architecture,
the module normalizes inputs into the network’s non-linearities operating range
and recomposes its output’s scales through a global skip connection, improving
accuracy and training robustness. HINT ensures the forecast coherence via bootstrap
sample reconciliation that restores the aggregation constraints into its base samples.
- Identity
| Name | Type | Description | Default |
|---|---|---|---|
h | int | Forecast horizon. | required |
model | NeuralForecast model | Instantiated model class from architecture collection. | required |
S | ndarray | Dumming matrix of size (base, bottom) see HierarchicalForecast’s aggregate method. | required |
reconciliation | str | HINT’s reconciliation method from [‘BottomUp’, ‘MinTraceOLS’, ‘MinTraceWLS’]. | required |
alias | str | Custom name of the model. | None |
HINT.fit
TemporalNorm into the neural
forecast architecture for a scale-decoupled optimization that robustifies
cross-learning the hierachy’s series scales.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dataset | TimeSeriesDataset | NeuralForecast’s TimeSeriesDataset see details here | required |
val_size | int | size of the validation set, (default 0). | 0 |
test_size | int | size of the test set, (default 0). | 0 |
random_seed | int | random seed for the prediction. | None |
| Name | Type | Description |
|---|---|---|
self | A fitted base NeuralForecast model. |
HINT.predict
| Name | Type | Description | Default |
|---|---|---|---|
dataset | TimeSeriesDataset | NeuralForecast’s TimeSeriesDataset see details here | required |
step_size | int | steps between sequential predictions, (default 1). | 1 |
random_seed | int | random seed for the prediction. | None |
**data_kwarg | additional parameters for the dataset module. | required |
| Name | Type | Description |
|---|---|---|
y_hat | numpy predictions of the NeuralForecast model. |
Usage Example
In this example we will use HINT for the hierarchical forecast task, a multivariate regression problem with aggregation constraints. The aggregation constraints can be compactcly represented by the summing matrix , the Figure belows shows an example. In this example we will make coherent predictions for the TourismL dataset. Outline:- Import packages
- Load hierarchical dataset
- Fit and Predict HINT
- Forecast Plot

2. Reconciliation Methods
get_identity_P
get_bottomup_P
| Name | Type | Description | Default |
|---|---|---|---|
S | ndarray | Summing matrix of size (base, bottom). | required |
| Type | Description |
|---|---|
np.ndarray: Reconciliation matrix of size (bottom, base). |
get_mintrace_ols_P
| Name | Type | Description | Default |
|---|---|---|---|
S | ndarray | Summing matrix of size (base, bottom). | required |
| Type | Description |
|---|---|
np.ndarray: Reconciliation matrix of size (bottom, base). |
get_mintrace_wls_P
| Name | Type | Description | Default |
|---|---|---|---|
S | ndarray | Summing matrix of size (base, bottom). | required |
| Type | Description |
|---|---|
np.ndarray: Reconciliation matrix of size (bottom, base). |

