Skip to main content
The Spectral Temporal Graph Neural Network (StemGNN) is a Graph-based multivariate time-series forecasting model. StemGNN jointly learns temporal dependencies and inter-series correlations in the spectral domain, by combining Graph Fourier Transform (GFT) and Discrete Fourier Transform (DFT). This method proved state-of-the-art performance on geo-temporal datasets such as Solar, METR-LA, and PEMS-BAY, and References Figure 1. StemGNN. Figure 1. StemGNN.

1. StemGNN

StemGNN

StemGNN(
    h,
    input_size,
    n_series,
    futr_exog_list=None,
    hist_exog_list=None,
    stat_exog_list=None,
    exclude_insample_y=False,
    n_stacks=2,
    multi_layer=5,
    dropout_rate=0.5,
    leaky_rate=0.2,
    loss=MAE(),
    valid_loss=None,
    max_steps=1000,
    learning_rate=0.001,
    num_lr_decays=3,
    early_stop_patience_steps=-1,
    val_check_steps=100,
    batch_size=32,
    valid_batch_size=None,
    windows_batch_size=32,
    inference_windows_batch_size=32,
    start_padding_enabled=False,
    training_data_availability_threshold=0.0,
    step_size=1,
    scaler_type="robust",
    random_seed=1,
    drop_last_loader=False,
    alias=None,
    optimizer=None,
    optimizer_kwargs=None,
    lr_scheduler=None,
    lr_scheduler_kwargs=None,
    dataloader_kwargs=None,
    **trainer_kwargs
)
Bases: BaseModel StemGNN The Spectral Temporal Graph Neural Network (StemGNN) is a Graph-based multivariate time-series forecasting model. StemGNN jointly learns temporal dependencies and inter-series correlations in the spectral domain, by combining Graph Fourier Transform (GFT) and Discrete Fourier Transform (DFT). Parameters:
NameTypeDescriptionDefault
hintForecast horizon.required
input_sizeintautorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].required
n_seriesintnumber of time-series.required
futr_exog_liststr listfuture exogenous columns.None
hist_exog_liststr listhistoric exogenous columns.None
stat_exog_liststr liststatic exogenous columns.None
n_stacksintnumber of stacks in the model.2
multi_layerintmultiplier for FC hidden size on StemGNN blocks.5
dropout_ratefloatdropout rate.0.5
leaky_ratefloatalpha for LeakyReLU layer on Latent Correlation layer.0.2
lossPyTorch moduleinstantiated train loss class from losses collection.MAE()
valid_lossPyTorch moduleinstantiated valid loss class from losses collection.None
max_stepsintmaximum number of training steps.1000
learning_ratefloatLearning rate between (0, 1).0.001
num_lr_decaysintNumber of learning rate decays, evenly distributed across max_steps.3
early_stop_patience_stepsintNumber of validation iterations before early stopping.-1
val_check_stepsintNumber of training steps between every validation loss check.100
batch_sizeintnumber of windows in each batch.32
valid_batch_sizeintnumber of different series in each validation and test batch, if None uses batch_size.None
windows_batch_sizeintnumber of windows to sample in each training batch, default uses all.32
inference_windows_batch_sizeintnumber of windows to sample in each inference batch, -1 uses all.32
start_padding_enabledboolif True, the model will pad the time series with zeros at the beginning, by input size.False
training_data_availability_thresholdUnion[float, List[float]]minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior).0.0
step_sizeintstep size between each window of temporal data.1
scaler_typestrtype of scaler for temporal inputs normalization see temporal scalers.‘robust’
random_seedintrandom_seed for pytorch initializer and numpy generators.1
drop_last_loaderboolif True TimeSeriesDataLoader drops last non-full batch.False
aliasstroptional, Custom name of the model.None
lr_scheduler_kwargsdictoptional, list of parameters used by the user specified lr_scheduler.None
dataloader_kwargsdictoptional, list of parameters passed into the PyTorch Lightning dataloader by the TimeSeriesDataLoader.None
**trainer_kwargsintkeyword trainer arguments inherited from PyTorch Lighning’s trainer.

StemGNN.fit

fit(
    dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None
)
Fit. The fit method, optimizes the neural network’s weights using the initialization parameters (learning_rate, windows_batch_size, …) and the loss function as defined during the initialization. Within fit we use a PyTorch Lightning Trainer that inherits the initialization’s self.trainer_kwargs, to customize its inputs, see PL’s trainer arguments. The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library. By default the model is not saving training checkpoints to protect disk memory, to get them change enable_checkpointing=True in __init__. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
val_sizeintValidation size for temporal cross-validation.0
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
test_sizeintTest size for temporal cross-validation.0
Returns:
TypeDescription
None

StemGNN.predict

predict(
    dataset,
    test_size=None,
    step_size=1,
    random_seed=None,
    quantiles=None,
    h=None,
    explainer_config=None,
    **data_module_kwargs
)
Predict. Neural network prediction with PL’s Trainer execution of predict_step. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
test_sizeintTest size for temporal cross-validation.None
step_sizeintStep size between each window.1
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
quantileslistTarget quantiles to predict.None
hintPrediction horizon, if None, uses the model’s fitted horizon. Defaults to None.None
explainer_configdictconfiguration for explanations.None
**data_module_kwargsdictPL’s TimeSeriesDataModule args, see documentation.
Returns:
TypeDescription
None

Usage Examples

Train model and forecast future values with predict method.
import pandas as pd
import matplotlib.pyplot as plt

from neuralforecast import NeuralForecast
from neuralforecast.models import StemGNN
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
from neuralforecast.losses.pytorch import MAE

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test

model = StemGNN(h=12,
                input_size=24,
                n_series=2,
                scaler_type='standard',
                max_steps=500,
                early_stop_patience_steps=-1,
                val_check_steps=10,
                learning_rate=1e-3,
                loss=MAE(),
                valid_loss=MAE(),
                batch_size=32
                )

fcst = NeuralForecast(models=[model], freq='ME')
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = fcst.predict(futr_df=Y_test_df)

# Plot predictions
fig, ax = plt.subplots(1, 1, figsize = (20, 7))
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['StemGNN'], c='blue', label='Forecast')
ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Year', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()
Using cross_validation to forecast multiple historic values.
fcst = NeuralForecast(models=[model], freq='M')
forecasts = fcst.cross_validation(df=AirPassengersPanel, static_df=AirPassengersStatic, n_windows=2, step_size=12)

# Plot predictions
fig, ax = plt.subplots(1, 1, figsize = (20, 7))
Y_hat_df = forecasts.loc['Airline1']
Y_df = AirPassengersPanel[AirPassengersPanel['unique_id']=='Airline1']

plt.plot(Y_df['ds'], Y_df['y'], c='black', label='True')
plt.plot(Y_hat_df['ds'], Y_hat_df['StemGNN'], c='blue', label='Forecast')
ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Year', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()

2. Auxiliary functions

GLU

GLU(input_channel, output_channel)
Bases: Module GLU

StockBlockLayer

StockBlockLayer(time_step, unit, multi_layer, stack_cnt=0)
Bases: Module StockBlockLayer