Embedding
source
DataEmbedding_wo_pos
DataEmbedding_wo_pos
DFT decomposition
source
DFT_series_decomp
Series decomposition block
Mixing
source
PastDecomposableMixing
PastDecomposableMixing
source
MultiScaleTrendMixing
Top-down mixing trend pattern
source
MultiScaleSeasonMixing
Bottom-up mixing season pattern
2. Model
source
TimeMixer
*TimeMixer Parameters
h: int, Forecast horizon. input_size: int, autorregresive inputs size, y=[1,2,3,4]
input_size=2 -> y_[t-2:t]=[1,2].n_series: int, number of
time-series.stat_exog_list: str list, static exogenous
columns.hist_exog_list: str list, historic exogenous columns.futr_exog_list: str list, future exogenous columns.d_model:
int, dimension of the model.d_ff: int, dimension of the
fully-connected network.dropout: float, dropout rate.e_layers: int, number of encoder layers.top_k: int, number of
selected frequencies.decomp_method: str, method of series
decomposition [moving_avg, dft_decomp].moving_avg: int, window
size of moving average.channel_independence: int, 0: channel
dependence, 1: channel independence.down_sampling_layers: int,
number of downsampling layers.down_sampling_window: int, size of
downsampling window.down_sampling_method: str, down sampling
method [avg, max, conv].use_norm: bool, whether to normalize or
not.decoder_input_size_multiplier: float = 0.5.loss:
PyTorch module, instantiated train loss class from losses
collection.valid_loss: PyTorch module=loss, instantiated valid loss class from
losses
collection.max_steps: int=1000, maximum number of training steps.learning_rate: float=1e-3, Learning rate between (0, 1).num_lr_decays: int=-1, Number of learning rate decays, evenly
distributed across max_steps.early_stop_patience_steps: int=-1,
Number of validation iterations before early stopping.val_check_steps: int=100, Number of training steps between every
validation loss check.batch_size: int=32, number of different
series in each batch.valid_batch_size: int=None, number of
different series in each validation and test batch, if None uses
batch_size.windows_batch_size: int=32, number of windows to
sample in each training batch, default uses all.inference_windows_batch_size: int=32, number of windows to sample in
each inference batch, -1 uses all.start_padding_enabled:
bool=False, if True, the model will pad the time series with zeros at
the beginning, by input size.step_size: int=1, step size between
each window of temporal data.scaler_type: str=‘identity’, type of
scaler for temporal inputs normalization see temporal
scalers.random_seed: int=1, random_seed for pytorch initializer and numpy
generators.drop_last_loader: bool=False, if True
TimeSeriesDataLoader drops last non-full batch.alias: str,
optional, Custom name of the model.optimizer: Subclass of
‘torch.optim.Optimizer’, optional, user specified optimizer instead of
the default choice (Adam).optimizer_kwargs: dict, optional, list
of parameters used by the user specified optimizer.lr_scheduler: Subclass of ‘torch.optim.lr_scheduler.LRScheduler’,
optional, user specified lr_scheduler instead of the default choice
(StepLR).lr_scheduler_kwargs: dict, optional, list of parameters
used by the user specified lr_scheduler.dataloader_kwargs:
dict, optional, list of parameters passed into the PyTorch Lightning
dataloader by the TimeSeriesDataLoader. **trainer_kwargs:
keyword trainer arguments inherited from PyTorch Lighning’s
trainer.References
Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, Jun Zhou.”TimeMixer: Decomposable Multiscale Mixing For Time Series Forecasting”
*
TimeMixer.fit
*Fit. The
fit method, optimizes the neural network’s weights using the
initialization parameters (learning_rate, windows_batch_size, …) and
the loss function as defined during the initialization. Within fit
we use a PyTorch Lightning Trainer that inherits the initialization’s
self.trainer_kwargs, to customize its inputs, see PL’s trainer
arguments.
The method is designed to be compatible with SKLearn-like classes and in
particular to be compatible with the StatsForecast library.
By default the model is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True in
__init__.
Parameters:dataset: NeuralForecast’s
TimeSeriesDataset,
see
documentation.val_size: int, validation size for temporal cross-validation.random_seed: int=None, random_seed for pytorch initializer and numpy
generators, overwrites model.__init__’s.test_size: int, test
size for temporal cross-validation.*
TimeMixer.predict
*Predict. Neural network prediction with PL’s
Trainer execution of
predict_step.
Parameters:dataset: NeuralForecast’s
TimeSeriesDataset,
see
documentation.test_size: int=None, test size for temporal cross-validation.step_size: int=1, Step size between each window.random_seed:
int=None, random_seed for pytorch initializer and numpy generators,
overwrites model.__init__’s.quantiles: list of floats,
optional (default=None), target quantiles to predict. **data_module_kwargs: PL’s TimeSeriesDataModule args, see
documentation.*
3. Usage example
cross_validation to forecast multiple historic values.

