Skip to main content
The DeepAR model produces probabilistic forecasts based on an autoregressive recurrent neural network optimized on panel data using cross-learning. DeepAR obtains its forecast distribution uses a Markov Chain Monte Carlo sampler with the following conditional probability: P(y[t+1:t+H]  y[:t],  x[:t+H](f),  x(s))\mathbb{P}(\mathbf{y}_{[t+1:t+H]}|\;\mathbf{y}_{[:t]},\; \mathbf{x}^{(f)}_{[:t+H]},\; \mathbf{x}^{(s)}) where x(s)\mathbf{x}^{(s)} are static exogenous inputs, x[:t+H](f)\mathbf{x}^{(f)}_{[:t+H]} are future exogenous available at the time of the prediction. The predictions are obtained by transforming the hidden states ht\mathbf{h}_{t} into predictive distribution parameters θt\theta_{t}, and then generating samples y^[t+1:t+H]\mathbf{\hat{y}}_{[t+1:t+H]} through Monte Carlo sampling trajectories. ht=RNN([yt,xt+1(f),x(s)],ht1)θt=Linear(ht)y^t+1=sample(  P(yt+1    θt)  ) \begin{align} \mathbf{h}_{t} &= \textrm{RNN}([\mathbf{y}_{t},\mathbf{x}^{(f)}_{t+1},\mathbf{x}^{(s)}], \mathbf{h}_{t-1})\\ \mathbf{\theta}_{t}&=\textrm{Linear}(\mathbf{h}_{t}) \\ \hat{y}_{t+1}&=\textrm{sample}(\;\mathrm{P}(y_{t+1}\;|\;\mathbf{\theta}_{t})\;) \end{align} References
Exogenous Variables, Losses, and Parameters Availability Given the sampling procedure during inference, DeepAR only supports DistributionLoss as training loss. Note that DeepAR generates a non-parametric forecast distribution using Monte Carlo. We use this sampling procedure also during validation to make it closer to the inference procedure. Therefore, only the MQLoss is available for validation. Aditionally, Monte Carlo implies that historic exogenous variables are not available for the model.
Figure 1. DeepAR model, during training the optimization signal comes from likelihood of observations, during inference a recurrent multi-step strategy is used to generate predictive distributions. Figure 1. DeepAR model, during training the optimization signal comes from likelihood of observations, during inference a recurrent multi-step strategy is used to generate predictive distributions.

1. DeepAR

DeepAR

DeepAR(
    h,
    input_size=-1,
    h_train=1,
    lstm_n_layers=2,
    lstm_hidden_size=128,
    lstm_dropout=0.1,
    decoder_hidden_layers=0,
    decoder_hidden_size=0,
    trajectory_samples=100,
    stat_exog_list=None,
    hist_exog_list=None,
    futr_exog_list=None,
    exclude_insample_y=False,
    loss=DistributionLoss(
        distribution="StudentT", level=[80, 90], return_params=False
    ),
    valid_loss=MAE(),
    max_steps=1000,
    learning_rate=0.001,
    num_lr_decays=3,
    early_stop_patience_steps=-1,
    val_check_steps=100,
    batch_size=32,
    valid_batch_size=None,
    windows_batch_size=1024,
    inference_windows_batch_size=-1,
    start_padding_enabled=False,
    training_data_availability_threshold=0.0,
    step_size=1,
    scaler_type="identity",
    random_seed=1,
    drop_last_loader=False,
    alias=None,
    optimizer=None,
    optimizer_kwargs=None,
    lr_scheduler=None,
    lr_scheduler_kwargs=None,
    dataloader_kwargs=None,
    **trainer_kwargs
)
Bases: BaseModel DeepAR Parameters:
NameTypeDescriptionDefault
hintForecast horizon.required
input_sizeintmaximum sequence length for truncated train backpropagation. Default -1 uses 3 * horizon-1
h_trainintmaximum sequence length for truncated train backpropagation. Default 1.1
lstm_n_layersintnumber of LSTM layers.2
lstm_hidden_sizeintLSTM hidden size.128
lstm_dropoutfloatLSTM dropout.0.1
decoder_hidden_layersintnumber of decoder MLP hidden layers. Default: 0 for linear layer.0
decoder_hidden_sizeintdecoder MLP hidden size. Default: 0 for linear layer.0
trajectory_samplesintnumber of Monte Carlo trajectories during inference.100
stat_exog_liststr liststatic exogenous columns.None
hist_exog_liststr listhistoric exogenous columns.None
futr_exog_liststr listfuture exogenous columns.None
exclude_insample_yboolthe model skips the autoregressive features y[t-input_size:t] if True.False
lossPyTorch moduleinstantiated train loss class from losses collection.DistributionLoss(distribution=‘StudentT’, level=[80, 90], return_params=False)
valid_lossPyTorch moduleinstantiated valid loss class from losses collection.MAE()
max_stepsintmaximum number of training steps.1000
learning_ratefloatLearning rate between (0, 1).0.001
num_lr_decaysintNumber of learning rate decays, evenly distributed across max_steps.3
early_stop_patience_stepsintNumber of validation iterations before early stopping.-1
val_check_stepsintNumber of training steps between every validation loss check.100
batch_sizeintnumber of different series in each batch.32
valid_batch_sizeintnumber of different series in each validation and test batch, if None uses batch_size.None
windows_batch_sizeintnumber of windows to sample in each training batch, default uses all.1024
inference_windows_batch_sizeintnumber of windows to sample in each inference batch, -1 uses all.-1
start_padding_enabledboolif True, the model will pad the time series with zeros at the beginning, by input size.False
training_data_availability_thresholdUnion[float, List[float]]minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior).0.0
step_sizeintstep size between each window of temporal data.1
scaler_typestrtype of scaler for temporal inputs normalization see temporal scalers.‘identity’
random_seedintrandom_seed for pytorch initializer and numpy generators.1
drop_last_loaderboolif True TimeSeriesDataLoader drops last non-full batch.False
aliasstroptional, Custom name of the model.None
optimizerSubclass of ‘torch.optim.Optimizer’optional, user specified optimizer instead of the default choice (Adam).None
optimizer_kwargsdictoptional, list of parameters used by the user specified optimizer.None
lr_schedulerSubclass of ‘torch.optim.lr_scheduler.LRScheduler’optional, user specified lr_scheduler instead of the default choice (StepLR).None
lr_scheduler_kwargsdictoptional, list of parameters used by the user specified lr_scheduler.None
dataloader_kwargsdictoptional, list of parameters passed into the PyTorch Lightning dataloader by the TimeSeriesDataLoader.None
**trainer_kwargsintkeyword trainer arguments inherited from PyTorch Lighning’s trainer.

DeepAR.fit

fit(
    dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None
)
Fit. The fit method, optimizes the neural network’s weights using the initialization parameters (learning_rate, windows_batch_size, …) and the loss function as defined during the initialization. Within fit we use a PyTorch Lightning Trainer that inherits the initialization’s self.trainer_kwargs, to customize its inputs, see PL’s trainer arguments. The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library. By default the model is not saving training checkpoints to protect disk memory, to get them change enable_checkpointing=True in __init__. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
val_sizeintValidation size for temporal cross-validation.0
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
test_sizeintTest size for temporal cross-validation.0
Returns:
TypeDescription
None

DeepAR.predict

predict(
    dataset,
    test_size=None,
    step_size=1,
    random_seed=None,
    quantiles=None,
    h=None,
    explainer_config=None,
    **data_module_kwargs
)
Predict. Neural network prediction with PL’s Trainer execution of predict_step. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
test_sizeintTest size for temporal cross-validation.None
step_sizeintStep size between each window.1
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
quantileslistTarget quantiles to predict.None
hintPrediction horizon, if None, uses the model’s fitted horizon. Defaults to None.None
explainer_configdictconfiguration for explanations.None
**data_module_kwargsdictPL’s TimeSeriesDataModule args, see documentation.
Returns:
TypeDescription
None

Usage Example

import pandas as pd
import matplotlib.pyplot as plt

from neuralforecast import NeuralForecast
from neuralforecast.models import DeepAR
from neuralforecast.losses.pytorch import DistributionLoss, MQLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test

nf = NeuralForecast(
    models=[DeepAR(h=12,
                   input_size=24,
                   lstm_n_layers=1,
                   trajectory_samples=100,
                   loss=DistributionLoss(distribution='StudentT', level=[80, 90], return_params=True),
                   valid_loss=MQLoss(level=[80, 90]),
                   learning_rate=0.005,
                   stat_exog_list=['airline1'],
                   futr_exog_list=['trend'],
                   max_steps=100,
                   val_check_steps=10,
                   early_stop_patience_steps=-1,
                   scaler_type='standard',
                   enable_progress_bar=True,
                   ),
    ],
    freq='ME'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
Y_hat_df = nf.predict(futr_df=Y_test_df)

# Plot quantile predictions
Y_hat_df = Y_hat_df.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['DeepAR-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:], 
                 y1=plot_df['DeepAR-lo-90'][-12:].values, 
                 y2=plot_df['DeepAR-hi-90'][-12:].values,
                 alpha=0.4, label='level 90')
plt.legend()
plt.grid()
plt.plot()

2. Auxiliary functions

Decoder

Decoder(in_features, out_features, hidden_size, hidden_layers)
Bases: Module Multi-Layer Perceptron Decoder Parameters:
NameTypeDescriptionDefault
in_featuresintdimension of input.required
out_featuresintdimension of output.required
hidden_sizeintdimension of hidden layers.required
hidden_layersintnumber of hidden layers.required