DeepAR
The DeepAR model produces probabilistic forecasts based on an autoregressive recurrent neural network optimized on panel data using cross-learning. DeepAR obtains its forecast distribution uses a Markov Chain Monte Carlo sampler with the following conditional probability:
where are static exogenous inputs, are future exogenous available at the time of the prediction. The predictions are obtained by transforming the hidden states into predictive distribution parameters , and then generating samples through Monte Carlo sampling trajectories.
References
- David Salinas, Valentin Flunkert, Jan Gasthaus,
Tim Januschowski (2020). “DeepAR: Probabilistic forecasting with
autoregressive recurrent networks”. International Journal of
Forecasting.
-
Alexander Alexandrov et. al (2020). “GluonTS: Probabilistic and Neural
Time Series Modeling in Python”. Journal of Machine Learning
Research.
Exogenous Variables, Losses, and Parameters Availability
Given the sampling procedure during inference, DeepAR only supports
DistributionLoss
as training loss.Note that DeepAR generates a non-parametric forecast distribution using Monte Carlo. We use this sampling procedure also during validation to make it closer to the inference procedure. Therefore, only the
MQLoss
is available for validation.Aditionally, Monte Carlo implies that historic exogenous variables are not available for the model.
source
Decoder
Decoder (in_features, out_features, hidden_size, hidden_layers)
*Multi-Layer Perceptron Decoder
Parameters:
in_features
: int, dimension of input.
out_features
: int, dimension of output.
hidden_size
: int,
dimension of hidden layers.
num_layers
: int, number of hidden
layers.
*
source
DeepAR
DeepAR (h, input_size:int=-1, lstm_n_layers:int=2, lstm_hidden_size:int=128, lstm_dropout:float=0.1, decoder_hidden_layers:int=0, decoder_hidden_size:int=0, trajectory_samples:int=100, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, exclude_insample_y=False, loss=DistributionLoss(), valid_loss=MQLoss(), max_steps:int=1000, learning_rate:float=0.001, num_lr_decays:int=3, early_stop_patience_steps:int=-1, val_check_steps:int=100, batch_size:int=32, valid_batch_size:Optional[int]=None, windows_batch_size:int=1024, inference_windows_batch_size:int=-1, start_padding_enabled=False, step_size:int=1, scaler_type:str='identity', random_seed:int=1, num_workers_loader=0, drop_last_loader=False, optimizer=None, optimizer_kwargs=None, lr_scheduler=None, lr_scheduler_kwargs=None, **trainer_kwargs)
*DeepAR
Parameters:
h
: int, Forecast horizon.
input_size
: int,
autorregresive inputs size, y=[1,2,3,4] input_size=2 ->
y_[t-2:t]=[1,2].
lstm_n_layers
: int=2, number of LSTM
layers.
lstm_hidden_size
: int=128, LSTM hidden size.
lstm_dropout
: float=0.1, LSTM dropout.
decoder_hidden_layers
:
int=0, number of decoder MLP hidden layers. Default: 0 for linear layer.
decoder_hidden_size
: int=0, decoder MLP hidden size. Default: 0
for linear layer.
trajectory_samples
: int=100, number of Monte
Carlo trajectories during inference.
stat_exog_list
: str list,
static exogenous columns.
hist_exog_list
: str list, historic
exogenous columns.
futr_exog_list
: str list, future exogenous
columns.
exclude_insample_y
: bool=False, the model skips the
autoregressive features y[t-input_size:t] if True.
loss
: PyTorch
module, instantiated train loss class from losses
collection.
valid_loss
: PyTorch module=loss
, instantiated valid loss class from
losses
collection.
max_steps
: int=1000, maximum number of training steps.
learning_rate
: float=1e-3, Learning rate between (0, 1).
num_lr_decays
: int=-1, Number of learning rate decays, evenly
distributed across max_steps.
early_stop_patience_steps
: int=-1,
Number of validation iterations before early stopping.
val_check_steps
: int=100, Number of training steps between every
validation loss check.
batch_size
: int=32, number of different
series in each batch.
valid_batch_size
: int=None, number of
different series in each validation and test batch, if None uses
batch_size.
windows_batch_size
: int=1024, number of windows to
sample in each training batch, default uses all.
inference_windows_batch_size
: int=-1, number of windows to sample in
each inference batch, -1 uses all.
start_padding_enabled
:
bool=False, if True, the model will pad the time series with zeros at
the beginning, by input size.
step_size
: int=1, step size between
each window of temporal data.
scaler_type
: str=‘identity’, type of
scaler for temporal inputs normalization see temporal
scalers.
random_seed
: int, random_seed for pytorch initializer and numpy
generators.
num_workers_loader
: int=os.cpu_count(), workers to be
used by TimeSeriesDataLoader
.
drop_last_loader
: bool=False, if
True TimeSeriesDataLoader
drops last non-full batch.
alias
: str,
optional, Custom name of the model.
optimizer
: Subclass of
‘torch.optim.Optimizer’, optional, user specified optimizer instead of
the default choice (Adam).
optimizer_kwargs
: dict, optional, list
of parameters used by the user specified optimizer
.
lr_scheduler
: Subclass of ‘torch.optim.lr_scheduler.LRScheduler’,
optional, user specified lr_scheduler instead of the default choice
(StepLR).
lr_scheduler_kwargs
: dict, optional, list of parameters
used by the user specified lr_scheduler
.
**trainer_kwargs
: int,
keyword trainer arguments inherited from PyTorch Lighning’s
trainer.
References
- David Salinas, Valentin Flunkert, Jan Gasthaus,
Tim Januschowski (2020). “DeepAR: Probabilistic forecasting with
autoregressive recurrent networks”. International Journal of
Forecasting.
-
Alexander Alexandrov et. al (2020). “GluonTS: Probabilistic and Neural
Time Series Modeling in Python”. Journal of Machine Learning
Research.
*
DeepAR.fit
DeepAR.fit (dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None)
*Fit.
The fit
method, optimizes the neural network’s weights using the
initialization parameters (learning_rate
, windows_batch_size
, …) and
the loss
function as defined during the initialization. Within fit
we use a PyTorch Lightning Trainer
that inherits the initialization’s
self.trainer_kwargs
, to customize its inputs, see PL’s trainer
arguments.
The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library.
By default the model
is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True
in
__init__
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
val_size
: int, validation size for temporal cross-validation.
random_seed
: int=None, random_seed for pytorch initializer and numpy
generators, overwrites model.__init__’s.
test_size
: int, test
size for temporal cross-validation.
*
DeepAR.predict
DeepAR.predict (dataset, test_size=None, step_size=1, random_seed=None, **data_module_kwargs)
*Predict.
Neural network prediction with PL’s Trainer
execution of
predict_step
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
test_size
: int=None, test size for temporal cross-validation.
step_size
: int=1, Step size between each window.
random_seed
:
int=None, random_seed for pytorch initializer and numpy generators,
overwrites model.__init__’s.
**data_module_kwargs
: PL’s
TimeSeriesDataModule args, see
documentation.*
Usage Example
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import DeepAR
from neuralforecast.losses.pytorch import DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test
nf = NeuralForecast(
models=[DeepAR(h=12,
input_size=48,
lstm_n_layers=3,
trajectory_samples=100,
loss=DistributionLoss(distribution='Normal', level=[80, 90], return_params=False),
learning_rate=0.005,
stat_exog_list=['airline1'],
futr_exog_list=['trend'],
max_steps=100,
val_check_steps=10,
early_stop_patience_steps=-1,
scaler_type='standard',
enable_progress_bar=True),
],
freq='M'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
Y_hat_df = nf.predict(futr_df=Y_test_df)
# Plot quantile predictions
Y_hat_df = Y_hat_df.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['DeepAR-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:],
y1=plot_df['DeepAR-lo-90'][-12:].values,
y2=plot_df['DeepAR-hi-90'][-12:].values,
alpha=0.4, label='level 90')
plt.legend()
plt.grid()
plt.plot()