Reversible Mixture of KAN - RMoK
1. Auxiliary functions
1.1 WaveKAN
source
WaveKANLayer
*This is a sample code for the simulations of the paper: Bozorgasl, Zavareh and Chen, Hao, Wav-KAN: Wavelet Kolmogorov-Arnold Networks (May, 2024)
https://arxiv.org/abs/2405.12832 and also available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4835325 We used efficient KAN notation and some part of the code:+*
1.2 TaylorKAN
source
TaylorKANLayer
https://github.com/Muyuzhierchengse/TaylorKAN/
1.3. JacobiKAN
source
JacobiKANLayer
https://github.com/SpaceLearner/JacobiKAN/blob/main/JacobiKANLayer.py
2. Model
source
RMoK
*Reversible Mixture of KAN Parameters
h
: int, Forecast
horizon.
input_size
: int, autorregresive inputs size,
y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
n_series
:
int, number of time-series.
futr_exog_list
: str list, future
exogenous columns.
hist_exog_list
: str list, historic exogenous
columns.
stat_exog_list
: str list, static exogenous columns.
taylor_order
: int, order of the Taylor polynomial.
jacobi_degree
: int, degree of the Jacobi polynomial.
wavelet_function
: str, wavelet function to use in the WaveKAN. Choose
from [“mexican_hat”, “morlet”, “dog”, “meyer”, “shannon”]
dropout
: float, dropout rate.
revin_affine
: bool=False, bool to
use affine in RevIn.
loss
: PyTorch module, instantiated train loss
class from losses
collection.
valid_loss
: PyTorch module=loss
, instantiated valid loss class from
losses
collection.
max_steps
: int=1000, maximum number of training steps.
learning_rate
: float=1e-3, Learning rate between (0, 1).
num_lr_decays
: int=-1, Number of learning rate decays, evenly
distributed across max_steps.
early_stop_patience_steps
: int=-1,
Number of validation iterations before early stopping.
val_check_steps
: int=100, Number of training steps between every
validation loss check.
batch_size
: int=32, number of different
series in each batch.
step_size
: int=1, step size between each
window of temporal data.
scaler_type
: str=‘identity’, type of
scaler for temporal inputs normalization see temporal
scalers.
random_seed
: int=1, random_seed for pytorch initializer and numpy
generators.
num_workers_loader
: int=os.cpu_count(), workers to be
used by TimeSeriesDataLoader
.
drop_last_loader
: bool=False, if
True TimeSeriesDataLoader
drops last non-full batch.
alias
: str,
optional, Custom name of the model.
optimizer
: Subclass of
‘torch.optim.Optimizer’, optional, user specified optimizer instead of
the default choice (Adam).
optimizer_kwargs
: dict, optional, list
of parameters used by the user specified optimizer
.
lr_scheduler
: Subclass of ‘torch.optim.lr_scheduler.LRScheduler’,
optional, user specified lr_scheduler instead of the default choice
(StepLR).
lr_scheduler_kwargs
: dict, optional, list of parameters
used by the user specified lr_scheduler
.
**trainer_kwargs
: int,
keyword trainer arguments inherited from PyTorch Lighning’s
trainer.
RMoK.fit
*Fit.
The fit
method, optimizes the neural network’s weights using the
initialization parameters (learning_rate
, windows_batch_size
, …) and
the loss
function as defined during the initialization. Within fit
we use a PyTorch Lightning Trainer
that inherits the initialization’s
self.trainer_kwargs
, to customize its inputs, see PL’s trainer
arguments.
The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library.
By default the model
is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True
in
__init__
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
val_size
: int, validation size for temporal cross-validation.
test_size
: int, test size for temporal cross-validation.
*
RMoK.predict
*Predict.
Neural network prediction with PL’s Trainer
execution of
predict_step
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
test_size
: int=None, test size for temporal cross-validation.
step_size
: int=1, Step size between each window.
**data_module_kwargs
: PL’s TimeSeriesDataModule args, see
documentation.*