NHITS
builds upon
NBEATS
and specializes its partial outputs in the different frequencies of the
time series through hierarchical interpolation and multi-rate input
processing. On the long-horizon forecasting task
NHITS
improved accuracy by 25% on AAAI’s best paper award the
Informer,
while being 50x faster.
The model is composed of several MLPs with ReLU non-linearities. Blocks
are connected via doubly residual stacking principle with the backcast
and forecast
outputs of the l-th block. Multi-rate
input pooling, hierarchical interpolation and backcast residual
connections together induce the specialization of the additive
predictions in different signal bands, reducing memory footprint and
computational time, thus improving the architecture parsimony and
accuracy.
References
- Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio (2019). “N-BEATS: Neural basis expansion analysis for interpretable time series forecasting”.
- Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza, Max Mergenthaler-Canseco, Artur Dubrawski (2023). “NHITS: Neural Hierarchical Interpolation for Time Series Forecasting”. Accepted at the Thirty-Seventh AAAI Conference on Artificial Intelligence.
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; and Zhang, W. (2020). “Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting”. Association for the Advancement of Artificial Intelligence Conference 2021 (AAAI 2021).

NHITS
NHITS
BaseModel
NHITS
The Neural Hierarchical Interpolation for Time Series (NHITS), is an MLP-based deep
neural architecture with backward and forward residual links. NHITS tackles volatility and
memory complexity challenges, by locally specializing its sequential predictions into
the signals frequencies with hierarchical interpolation and pooling.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
h | int | Forecast horizon. | required |
input_size | int | autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2]. | required |
futr_exog_list | str list | future exogenous columns. | None |
hist_exog_list | str list | historic exogenous columns. | None |
stat_exog_list | str list | static exogenous columns. | None |
exclude_insample_y | bool | the model skips the autoregressive features y[t-input_size:t] if True. | False |
stack_types | List[str] | stacks list in the form N * [‘identity’], to be deprecated in favor of n_stacks. Note that len(stack_types)=len(n_freq_downsample)=len(n_pool_kernel_size). | [‘identity’, ‘identity’, ‘identity’] |
n_blocks | List[int] | Number of blocks for each stack. Note that len(n_blocks) = len(stack_types). | [1, 1, 1] |
mlp_units | List[List[int]] | Structure of hidden layers for each stack type. Each internal list should contain the number of units of each hidden layer. Note that len(n_hidden) = len(stack_types). | 3 * [[512, 512]] |
n_pool_kernel_size | List[int] | list with the size of the windows to take a max/avg over. Note that len(stack_types)=len(n_freq_downsample)=len(n_pool_kernel_size). | [2, 2, 1] |
n_freq_downsample | List[int] | list with the stack’s coefficients (inverse expressivity ratios). Note that len(stack_types)=len(n_freq_downsample)=len(n_pool_kernel_size). | [4, 2, 1] |
pooling_mode | str | input pooling module from [‘MaxPool1d’, ‘AvgPool1d’]. | ’MaxPool1d’ |
interpolation_mode | str | interpolation basis from [‘linear’, ‘nearest’, ‘cubic’]. | ‘linear’ |
dropout_prob_theta | float | Float between (0, 1). Dropout for NHITS basis. | 0.0 |
activation | str | activation from [‘ReLU’, ‘Softplus’, ‘Tanh’, ‘SELU’, ‘LeakyReLU’, ‘PReLU’, ‘Sigmoid’]. | ’ReLU’ |
learning_rate | float | Learning rate between (0, 1). | 0.001 |
num_lr_decays | int | Number of learning rate decays, evenly distributed across max_steps. | 3 |
early_stop_patience_steps | int | Number of validation iterations before early stopping. | -1 |
val_check_steps | int | Number of training steps between every validation loss check. | 100 |
batch_size | int | number of different series in each batch. | 32 |
valid_batch_size | int | number of different series in each validation and test batch, if None uses batch_size. | None |
windows_batch_size | int | number of windows to sample in each training batch, default uses all. | 1024 |
inference_windows_batch_size | int | number of windows to sample in each inference batch, -1 uses all. | -1 |
start_padding_enabled | bool | if True, the model will pad the time series with zeros at the beginning, by input size. | False |
training_data_availability_threshold | Union[float, List[float]] | minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior). | 0.0 |
step_size | int | step size between each window of temporal data. | 1 |
scaler_type | str | type of scaler for temporal inputs normalization see temporal scalers. | ‘identity’ |
random_seed | int | random_seed for pytorch initializer and numpy generators. | 1 |
drop_last_loader | bool | if True TimeSeriesDataLoader drops last non-full batch. | False |
alias | str | optional, Custom name of the model. | None |
optimizer | Subclass of ‘torch.optim.Optimizer’ | optional, user specified optimizer instead of the default choice (Adam). | None |
optimizer_kwargs | dict | optional, list of parameters used by the user specified optimizer. | None |
lr_scheduler | Subclass of ‘torch.optim.lr_scheduler.LRScheduler’ | optional, user specified lr_scheduler instead of the default choice (StepLR). | None |
lr_scheduler_kwargs | dict | optional, list of parameters used by the user specified lr_scheduler. | None |
dataloader_kwargs | dict | optional, list of parameters passed into the PyTorch Lightning dataloader by the TimeSeriesDataLoader. | None |
**trainer_kwargs | int | keyword trainer arguments inherited from PyTorch Lighning’s trainer. |
NHITS.fit
fit method, optimizes the neural network’s weights using the
initialization parameters (learning_rate, windows_batch_size, …)
and the loss function as defined during the initialization.
Within fit we use a PyTorch Lightning Trainer that
inherits the initialization’s self.trainer_kwargs, to customize
its inputs, see PL’s trainer arguments.
The method is designed to be compatible with SKLearn-like classes
and in particular to be compatible with the StatsForecast library.
By default the model is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True in __init__.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dataset | TimeSeriesDataset | NeuralForecast’s TimeSeriesDataset, see documentation. | required |
val_size | int | Validation size for temporal cross-validation. | 0 |
random_seed | int | Random seed for pytorch initializer and numpy generators, overwrites model.init’s. | None |
test_size | int | Test size for temporal cross-validation. | 0 |
| Type | Description |
|---|---|
| None |
NHITS.predict
Trainer execution of predict_step.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dataset | TimeSeriesDataset | NeuralForecast’s TimeSeriesDataset, see documentation. | required |
test_size | int | Test size for temporal cross-validation. | None |
step_size | int | Step size between each window. | 1 |
random_seed | int | Random seed for pytorch initializer and numpy generators, overwrites model.init’s. | None |
quantiles | list | Target quantiles to predict. | None |
h | int | Prediction horizon, if None, uses the model’s fitted horizon. Defaults to None. | None |
explainer_config | dict | configuration for explanations. | None |
**data_module_kwargs | dict | PL’s TimeSeriesDataModule args, see documentation. |
| Type | Description |
|---|---|
| None |

