RNN
Elman proposed this classic recurrent neural network
(RNN
)
in 1990, where each layer uses the following recurrent transformation:
where , is the hidden state of RNN layer for
time , is the input at time and
is the hidden state of the previous layer at ,
are static exogenous inputs,
historic exogenous, are future exogenous
available at the time of the prediction. The available activations are
tanh
, and relu
. The predictions are obtained by transforming the
hidden states into contexts , that are decoded
and adapted into through MLPs.
References
-Jeffrey L. Elman (1990). “Finding Structure in
Time”.
-Cho, K., van Merrienboer, B., Gülcehre, C., Bougares, F., Schwenk, H.,
& Bengio, Y. (2014). Learning phrase representations using RNN
encoder-decoder for statistical machine
translation.
source
RNN
*RNN
Multi Layer Elman RNN (RNN), with MLP decoder. The network has tanh
or
relu
non-linearities, it is trained using ADAM stochastic gradient
descent. The network accepts static, historic and future exogenous data.
Parameters:
h
: int, forecast horizon.
input_size
: int,
maximum sequence length for truncated train backpropagation. Default -1
uses 3 * horizon
inference_input_size
: int, maximum sequence
length for truncated inference. Default None uses input_size
history.
encoder_n_layers
: int=2, number of layers for the
RNN.
encoder_hidden_size
: int=200, units for the RNN’s hidden
state size.
encoder_activation
: str=tanh
, type of RNN activation
from tanh
or relu
.
encoder_bias
: bool=True, whether or not to
use biases b_ih, b_hh within RNN units.
encoder_dropout
: float=0.,
dropout regularization applied to RNN outputs.
context_size
:
deprecated.
decoder_hidden_size
: int=200, size of hidden layer for
the MLP decoder.
decoder_layers
: int=2, number of layers for the
MLP decoder.
futr_exog_list
: str list, future exogenous
columns.
hist_exog_list
: str list, historic exogenous columns.
stat_exog_list
: str list, static exogenous columns.
exclude_insample_y
: bool=False, whether to exclude the target variable
from the historic exogenous data.
recurrent
: bool=False, whether
to produce forecasts recursively (True) or direct (False).
loss
:
PyTorch module, instantiated train loss class from losses
collection.
valid_loss
: PyTorch module=loss
, instantiated valid loss class from
losses
collection.
max_steps
: int=1000, maximum number of training steps.
learning_rate
: float=1e-3, Learning rate between (0, 1).
num_lr_decays
: int=-1, Number of learning rate decays, evenly
distributed across max_steps.
early_stop_patience_steps
: int=-1,
Number of validation iterations before early stopping.
val_check_steps
: int=100, Number of training steps between every
validation loss check.
batch_size
: int=32, number of
differentseries in each batch.
valid_batch_size
: int=None, number
of different series in each validation and test batch.
windows_batch_size
: int=128, number of windows to sample in each
training batch, default uses all.
inference_windows_batch_size
:
int=1024, number of windows to sample in each inference batch, -1 uses
all.
start_padding_enabled
: bool=False, if True, the model will
pad the time series with zeros at the beginning, by input size.
step_size
: int=1, step size between each window of temporal
data.
scaler_type
: str=‘robust’, type of scaler for temporal inputs
normalization see temporal
scalers.
random_seed
: int=1, random_seed for pytorch initializer and numpy
generators.
drop_last_loader
: bool=False, if True
TimeSeriesDataLoader
drops last non-full batch.
alias
: str,
optional, Custom name of the model.
optimizer
: Subclass of
‘torch.optim.Optimizer’, optional, user specified optimizer instead of
the default choice (Adam).
optimizer_kwargs
: dict, optional, list
of parameters used by the user specified optimizer
.
lr_scheduler
: Subclass of ‘torch.optim.lr_scheduler.LRScheduler’,
optional, user specified lr_scheduler instead of the default choice
(StepLR).
lr_scheduler_kwargs
: dict, optional, list of parameters
used by the user specified lr_scheduler
.
dataloader_kwargs
: dict, optional, list of parameters passed into the
PyTorch Lightning dataloader by the TimeSeriesDataLoader
.
**trainer_kwargs
: int, keyword trainer arguments inherited from
PyTorch Lighning’s
trainer.
*
RNN.fit
*Fit.
The fit
method, optimizes the neural network’s weights using the
initialization parameters (learning_rate
, windows_batch_size
, …) and
the loss
function as defined during the initialization. Within fit
we use a PyTorch Lightning Trainer
that inherits the initialization’s
self.trainer_kwargs
, to customize its inputs, see PL’s trainer
arguments.
The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library.
By default the model
is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True
in
__init__
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
val_size
: int, validation size for temporal cross-validation.
random_seed
: int=None, random_seed for pytorch initializer and numpy
generators, overwrites model.__init__’s.
test_size
: int, test
size for temporal cross-validation.
*
RNN.predict
*Predict.
Neural network prediction with PL’s Trainer
execution of
predict_step
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
test_size
: int=None, test size for temporal cross-validation.
step_size
: int=1, Step size between each window.
random_seed
:
int=None, random_seed for pytorch initializer and numpy generators,
overwrites model.__init__’s.
quantiles
: list of floats,
optional (default=None), target quantiles to predict.
**data_module_kwargs
: PL’s TimeSeriesDataModule args, see
documentation.*
Usage Example
Was this page helpful?