MLP)
composed of stacked Fully Connected Neural Networks trained with
backpropagation. Each node in the architecture is capable of modeling
non-linear relationships granted by their activation functions. Novel
activations like Rectified Linear Units (ReLU) have greatly improved the
ability to fit deeper networks overcoming gradient vanishing problems that
were associated with Sigmoid and TanH activations. For the forecasting
task the last layer is changed to follow a auto-regression problem. This
version is multivariate, indicating that it will predict all time series of
the forecasting problem jointly.
References
-Rosenblatt, F. (1958). “The perceptron: A probabilistic model for information storage and organization in the brain.”
-Fukushima, K. (1975). “Cognitron: A self-organizing multilayered neural network.”
-Vinod Nair, Geoffrey E. Hinton (2010). “Rectified Linear Units Improve Restricted Boltzmann Machines”

MLPMultivariate
MLPMultivariate
BaseModel
MLPMultivariate
Simple Multi Layer Perceptron architecture (MLP) for multivariate forecasting.
This deep neural network has constant units through its layers, each with
ReLU non-linearities, it is trained using ADAM stochastic gradient descent.
The network accepts static, historic and future exogenous data, flattens
the inputs and learns fully connected relationships against the target variables.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
h | int | forecast horizon. | required |
input_size | int | considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2]. | required |
n_series | int | number of time-series. | required |
stat_exog_list | str list | static exogenous columns. | None |
hist_exog_list | str list | historic exogenous columns. | None |
futr_exog_list | str list | future exogenous columns. | None |
num_layers | int | number of layers for the MLP. | 2 |
hidden_size | int | number of units for each layer of the MLP. | 1024 |
loss | PyTorch module | instantiated train loss class from losses collection. | MAE() |
valid_loss | PyTorch module | instantiated valid loss class from losses collection. | None |
max_steps | int | maximum number of training steps. | 1000 |
learning_rate | float | Learning rate between (0, 1). | 0.001 |
num_lr_decays | int | Number of learning rate decays, evenly distributed across max_steps. | -1 |
early_stop_patience_steps | int | Number of validation iterations before early stopping. | -1 |
val_check_steps | int | Number of training steps between every validation loss check. | 100 |
batch_size | int | number of different series in each batch. | 32 |
valid_batch_size | int | number of different series in each validation and test batch, if None uses batch_size. | None |
windows_batch_size | int | number of windows to sample in each training batch, default uses all. | 32 |
inference_windows_batch_size | int | number of windows to sample in each inference batch, -1 uses all. | 32 |
start_padding_enabled | bool | if True, the model will pad the time series with zeros at the beginning, by input size. | False |
training_data_availability_threshold | Union[float, List[float]] | minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior). | 0.0 |
step_size | int | step size between each window of temporal data. | 1 |
scaler_type | str | type of scaler for temporal inputs normalization see temporal scalers. | ‘identity’ |
random_seed | int | random_seed for pytorch initializer and numpy generators. | 1 |
drop_last_loader | bool | if True TimeSeriesDataLoader drops last non-full batch. | False |
alias | str | optional, Custom name of the model. | None |
optimizer | Subclass of ‘torch.optim.Optimizer’ | optional, user specified optimizer instead of the default choice (Adam). | None |
optimizer_kwargs | dict | optional, list of parameters used by the user specified optimizer. | None |
lr_scheduler | Subclass of ‘torch.optim.lr_scheduler.LRScheduler’ | optional, user specified lr_scheduler instead of the default choice (StepLR). | None |
lr_scheduler_kwargs | dict | optional, list of parameters used by the user specified lr_scheduler. | None |
dataloader_kwargs | dict | optional, list of parameters passed into the PyTorch Lightning dataloader by the TimeSeriesDataLoader. | None |
**trainer_kwargs | int | keyword trainer arguments inherited from PyTorch Lighning’s trainer. |
MLPMultivariate.fit
fit method, optimizes the neural network’s weights using the
initialization parameters (learning_rate, windows_batch_size, …)
and the loss function as defined during the initialization.
Within fit we use a PyTorch Lightning Trainer that
inherits the initialization’s self.trainer_kwargs, to customize
its inputs, see PL’s trainer arguments.
The method is designed to be compatible with SKLearn-like classes
and in particular to be compatible with the StatsForecast library.
By default the model is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True in __init__.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dataset | TimeSeriesDataset | NeuralForecast’s TimeSeriesDataset, see documentation. | required |
val_size | int | Validation size for temporal cross-validation. | 0 |
random_seed | int | Random seed for pytorch initializer and numpy generators, overwrites model.init’s. | None |
test_size | int | Test size for temporal cross-validation. | 0 |
| Type | Description |
|---|---|
| None |
MLPMultivariate.predict
Trainer execution of predict_step.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dataset | TimeSeriesDataset | NeuralForecast’s TimeSeriesDataset, see documentation. | required |
test_size | int | Test size for temporal cross-validation. | None |
step_size | int | Step size between each window. | 1 |
random_seed | int | Random seed for pytorch initializer and numpy generators, overwrites model.init’s. | None |
quantiles | list | Target quantiles to predict. | None |
h | int | Prediction horizon, if None, uses the model’s fitted horizon. Defaults to None. | None |
explainer_config | dict | configuration for explanations. | None |
**data_module_kwargs | dict | PL’s TimeSeriesDataModule args, see documentation. |
| Type | Description |
|---|---|
| None |

