MLP
One of the simplest neural architectures are Multi Layer Perceptrons (MLP
) composed of stacked Fully Connected Neural Networks trained with backpropagation. Each node in the architecture is capable of modeling non-linear relationships granted by their activation functions. Novel activations like Rectified Linear Units (ReLU
) have greatly improved the ability to fit deeper networks overcoming gradient vanishing problems that were associated with Sigmoid
and TanH
activations. For the forecasting task the last layer is changed to follow a auto-regression problem.
References
-Rosenblatt, F. (1958). “The perceptron: A probabilistic model for information storage and organization in the brain.”
-Fukushima, K. (1975). “Cognitron: A self-organizing multilayered neural network.”
-Vinod Nair, Geoffrey E. Hinton (2010). “Rectified Linear Units Improve Restricted Boltzmann Machines”
source
MLP
MLP (h, input_size, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, exclude_insample_y=False, num_layers=2, hidden_size=1024, loss=MAE(), valid_loss=None, max_steps:int=1000, learning_rate:float=0.001, num_lr_decays:int=-1, early_stop_patience_steps:int=-1, val_check_steps:int=100, batch_size:int=32, valid_batch_size:Optional[int]=None, windows_batch_size=1024, inference_windows_batch_size=-1, start_padding_enabled=False, step_size:int=1, scaler_type:str='identity', random_seed:int=1, num_workers_loader:int=0, drop_last_loader:bool=False, optimizer=None, optimizer_kwargs=None, lr_scheduler=None, lr_scheduler_kwargs=None, **trainer_kwargs)
*MLP
Simple Multi Layer Perceptron architecture (MLP). This deep neural network has constant units through its layers, each with ReLU non-linearities, it is trained using ADAM stochastic gradient descent. The network accepts static, historic and future exogenous data, flattens the inputs and learns fully connected relationships against the target variable.
Parameters:
h
: int, forecast horizon.
input_size
: int,
considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 ->
lags=[1,2].
stat_exog_list
: str list, static exogenous
columns.
hist_exog_list
: str list, historic exogenous columns.
futr_exog_list
: str list, future exogenous columns.
exclude_insample_y
: bool=False, the model skips the autoregressive
features y[t-input_size:t] if True.
n_layers
: int, number of
layers for the MLP.
hidden_size
: int, number of units for each
layer of the MLP.
loss
: PyTorch module, instantiated train loss
class from losses
collection.
valid_loss
: PyTorch module=loss
, instantiated valid loss class from
losses
collection.
max_steps
: int=1000, maximum number of training steps.
learning_rate
: float=1e-3, Learning rate between (0, 1).
num_lr_decays
: int=-1, Number of learning rate decays, evenly
distributed across max_steps.
early_stop_patience_steps
: int=-1,
Number of validation iterations before early stopping.
val_check_steps
: int=100, Number of training steps between every
validation loss check.
batch_size
: int=32, number of different
series in each batch.
valid_batch_size
: int=None, number of
different series in each validation and test batch, if None uses
batch_size.
windows_batch_size
: int=1024, number of windows to
sample in each training batch, default uses all.
inference_windows_batch_size
: int=-1, number of windows to sample in
each inference batch, -1 uses all.
start_padding_enabled
:
bool=False, if True, the model will pad the time series with zeros at
the beginning, by input size.
step_size
: int=1, step size between
each window of temporal data.
scaler_type
: str=‘identity’, type of
scaler for temporal inputs normalization see temporal
scalers.
random_seed
: int=1, random_seed for pytorch initializer and numpy
generators.
num_workers_loader
: int=os.cpu_count(), workers to be
used by TimeSeriesDataLoader
.
drop_last_loader
: bool=False, if
True TimeSeriesDataLoader
drops last non-full batch.
alias
: str,
optional, Custom name of the model.
optimizer
: Subclass of
‘torch.optim.Optimizer’, optional, user specified optimizer instead of
the default choice (Adam).
optimizer_kwargs
: dict, optional, list
of parameters used by the user specified optimizer
.
lr_scheduler
: Subclass of ‘torch.optim.lr_scheduler.LRScheduler’,
optional, user specified lr_scheduler instead of the default choice
(StepLR).
lr_scheduler_kwargs
: dict, optional, list of parameters
used by the user specified lr_scheduler
.
**trainer_kwargs
: int, keyword trainer arguments inherited from
PyTorch Lighning’s
trainer.
*
MLP.fit
MLP.fit (dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None)
*Fit.
The fit
method, optimizes the neural network’s weights using the
initialization parameters (learning_rate
, windows_batch_size
, …) and
the loss
function as defined during the initialization. Within fit
we use a PyTorch Lightning Trainer
that inherits the initialization’s
self.trainer_kwargs
, to customize its inputs, see PL’s trainer
arguments.
The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library.
By default the model
is not saving training checkpoints to protect
disk memory, to get them change enable_checkpointing=True
in
__init__
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
val_size
: int, validation size for temporal cross-validation.
random_seed
: int=None, random_seed for pytorch initializer and numpy
generators, overwrites model.__init__’s.
test_size
: int, test
size for temporal cross-validation.
*
MLP.predict
MLP.predict (dataset, test_size=None, step_size=1, random_seed=None, **data_module_kwargs)
*Predict.
Neural network prediction with PL’s Trainer
execution of
predict_step
.
Parameters:
dataset
: NeuralForecast’s
TimeSeriesDataset
,
see
documentation.
test_size
: int=None, test size for temporal cross-validation.
step_size
: int=1, Step size between each window.
random_seed
:
int=None, random_seed for pytorch initializer and numpy generators,
overwrites model.__init__’s.
**data_module_kwargs
: PL’s
TimeSeriesDataModule args, see
documentation.*
Usage Example
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import MLP
from neuralforecast.losses.pytorch import DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test
model = MLP(h=12, input_size=24,
loss=DistributionLoss(distribution='Normal', level=[80, 90]),
scaler_type='robust',
learning_rate=1e-3,
max_steps=200,
val_check_steps=10,
early_stop_patience_steps=2)
fcst = NeuralForecast(
models=[model],
freq='M'
)
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = fcst.predict(futr_df=Y_test_df)
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['MLP-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:],
y1=plot_df['MLP-lo-90'][-12:].values,
y2=plot_df['MLP-hi-90'][-12:].values,
alpha=0.4, label='level 90')
plt.grid()
plt.legend()
plt.plot()