Skip to main content
The iTransformer model simply takes the Transformer architecture but it applies the attention and feed-forward network on the inverted dimensions. This means that time points of each individual series are embedded into tokens. That way, the attention mechanisms learn multivariate correlation and the feed-forward network learns non-linear relationships.

References

1. iTransformer

iTransformer

iTransformer(
    h,
    input_size,
    n_series,
    futr_exog_list=None,
    hist_exog_list=None,
    stat_exog_list=None,
    exclude_insample_y=False,
    hidden_size=512,
    n_heads=8,
    e_layers=2,
    d_layers=1,
    d_ff=2048,
    factor=1,
    dropout=0.1,
    use_norm=True,
    loss=MAE(),
    valid_loss=None,
    max_steps=1000,
    learning_rate=0.001,
    num_lr_decays=-1,
    early_stop_patience_steps=-1,
    val_check_steps=100,
    batch_size=32,
    valid_batch_size=None,
    windows_batch_size=32,
    inference_windows_batch_size=32,
    start_padding_enabled=False,
    training_data_availability_threshold=0.0,
    step_size=1,
    scaler_type="identity",
    random_seed=1,
    drop_last_loader=False,
    alias=None,
    optimizer=None,
    optimizer_kwargs=None,
    lr_scheduler=None,
    lr_scheduler_kwargs=None,
    dataloader_kwargs=None,
    **trainer_kwargs
)
Bases: BaseModel iTransformer Parameters:
NameTypeDescriptionDefault
hintForecast horizon.required
input_sizeintautorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].required
n_seriesintnumber of time-series.required
futr_exog_liststr listfuture exogenous columns.None
hist_exog_liststr listhistoric exogenous columns.None
stat_exog_liststr liststatic exogenous columns.None
exclude_insample_yboolthe model skips the autoregressive features y[t-input_size:t] if True.False
hidden_sizeintdimension of the model.512
n_headsintnumber of heads.8
e_layersintnumber of encoder layers.2
d_layersintnumber of decoder layers.1
d_ffintdimension of fully-connected layer.2048
factorintattention factor.1
dropoutfloatdropout rate.0.1
use_normboolwhether to normalize or not.True
lossPyTorch moduleinstantiated train loss class from losses collection.MAE()
valid_lossPyTorch moduleinstantiated valid loss class from losses collection.None
max_stepsintmaximum number of training steps.1000
learning_ratefloatLearning rate between (0, 1).0.001
num_lr_decaysintNumber of learning rate decays, evenly distributed across max_steps.-1
early_stop_patience_stepsintNumber of validation iterations before early stopping.-1
val_check_stepsintNumber of training steps between every validation loss check.100
batch_sizeintnumber of different series in each batch.32
valid_batch_sizeintnumber of different series in each validation and test batch, if None uses batch_size.None
windows_batch_sizeintnumber of windows to sample in each training batch, default uses all.32
inference_windows_batch_sizeintnumber of windows to sample in each inference batch, -1 uses all.32
start_padding_enabledboolif True, the model will pad the time series with zeros at the beginning, by input size.False
training_data_availability_thresholdUnion[float, List[float]]minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior).0.0
step_sizeintstep size between each window of temporal data.1
scaler_typestrtype of scaler for temporal inputs normalization see temporal scalers.‘identity’
random_seedintrandom_seed for pytorch initializer and numpy generators.1
drop_last_loaderboolif True TimeSeriesDataLoader drops last non-full batch.False
aliasstroptional, Custom name of the model.None
optimizerSubclass of ‘torch.optim.Optimizer’optional, user specified optimizer instead of the default choice (Adam).None
optimizer_kwargsdictoptional, list of parameters used by the user specified optimizer.None
lr_schedulerSubclass of ‘torch.optim.lr_scheduler.LRScheduler’optional, user specified lr_scheduler instead of the default choice (StepLR).None
lr_scheduler_kwargsdictoptional, list of parameters used by the user specified lr_scheduler.None
dataloader_kwargsdictoptional, list of parameters passed into the PyTorch Lightning dataloader by the TimeSeriesDataLoader.None
**trainer_kwargsintkeyword trainer arguments inherited from PyTorch Lighning’s trainer.

iTransformer.fit

fit(
    dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None
)
Fit. The fit method, optimizes the neural network’s weights using the initialization parameters (learning_rate, windows_batch_size, …) and the loss function as defined during the initialization. Within fit we use a PyTorch Lightning Trainer that inherits the initialization’s self.trainer_kwargs, to customize its inputs, see PL’s trainer arguments. The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library. By default the model is not saving training checkpoints to protect disk memory, to get them change enable_checkpointing=True in __init__. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
val_sizeintValidation size for temporal cross-validation.0
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
test_sizeintTest size for temporal cross-validation.0
Returns:
TypeDescription
None

iTransformer.predict

predict(
    dataset,
    test_size=None,
    step_size=1,
    random_seed=None,
    quantiles=None,
    h=None,
    explainer_config=None,
    **data_module_kwargs
)
Predict. Neural network prediction with PL’s Trainer execution of predict_step. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
test_sizeintTest size for temporal cross-validation.None
step_sizeintStep size between each window.1
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
quantileslistTarget quantiles to predict.None
hintPrediction horizon, if None, uses the model’s fitted horizon. Defaults to None.None
explainer_configdictconfiguration for explanations.None
**data_module_kwargsdictPL’s TimeSeriesDataModule args, see documentation.
Returns:
TypeDescription
None

Usage example

import pandas as pd
import matplotlib.pyplot as plt

from neuralforecast import NeuralForecast
from neuralforecast.models import iTransformer
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
from neuralforecast.losses.pytorch import MSE

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test

model = iTransformer(h=12,
                     input_size=24,
                     n_series=2,
                     hidden_size=128,
                     n_heads=2,
                     e_layers=2,
                     d_layers=1,
                     d_ff=4,
                     factor=1,
                     dropout=0.1,
                     use_norm=True,
                     loss=MSE(),
                     valid_loss=MAE(),
                     early_stop_patience_steps=3,
                     batch_size=32,
                     max_steps=100)

fcst = NeuralForecast(models=[model], freq='ME')
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = fcst.predict(futr_df=Y_test_df)

# Plot predictions
fig, ax = plt.subplots(1, 1, figsize = (20, 7))
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['iTransformer'], c='blue', label='Forecast')
ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Year', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()