Skip to main content
Time-Series Mixer exogenous (TSMixerx) is a MLP-based multivariate time-series forecasting model, with capability for additional exogenous inputs. TSMixerx jointly learns temporal and cross-sectional representations of the time-series by repeatedly combining time and feature information using stacked mixing layers. A mixing layer consists of a sequential time- and feature Multi Layer Perceptron (MLP). Figure 2. TSMixerX for multivariate time series forecasting. Figure 2. TSMixerX for multivariate time series forecasting.

1. TSMixerx

TSMixerx

TSMixerx(
    h,
    input_size,
    n_series,
    futr_exog_list=None,
    hist_exog_list=None,
    stat_exog_list=None,
    exclude_insample_y=False,
    n_block=2,
    ff_dim=64,
    dropout=0.0,
    revin=True,
    loss=MAE(),
    valid_loss=None,
    max_steps=1000,
    learning_rate=0.001,
    num_lr_decays=-1,
    early_stop_patience_steps=-1,
    val_check_steps=100,
    batch_size=32,
    valid_batch_size=None,
    windows_batch_size=32,
    inference_windows_batch_size=32,
    start_padding_enabled=False,
    training_data_availability_threshold=0.0,
    step_size=1,
    scaler_type="identity",
    random_seed=1,
    drop_last_loader=False,
    alias=None,
    optimizer=None,
    optimizer_kwargs=None,
    lr_scheduler=None,
    lr_scheduler_kwargs=None,
    dataloader_kwargs=None,
    **trainer_kwargs
)
Bases: BaseModel TSMixerx Time-Series Mixer exogenous (TSMixerx) is a MLP-based multivariate time-series forecasting model, with capability for additional exogenous inputs. TSMixerx jointly learns temporal and cross-sectional representations of the time-series by repeatedly combining time- and feature information using stacked mixing layers. A mixing layer consists of a sequential time- and feature Multi Layer Perceptron (MLP). Parameters:
NameTypeDescriptionDefault
hintforecast horizon.required
input_sizeintconsidered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].required
n_seriesintnumber of time-series.required
futr_exog_liststr listfuture exogenous columns.None
hist_exog_liststr listhistoric exogenous columns.None
stat_exog_liststr liststatic exogenous columns.None
exclude_insample_yboolif True excludes insample_y from the model.False
n_blockintnumber of mixing layers in the model.2
ff_dimintnumber of units for the second feed-forward layer in the feature MLP.64
dropoutfloatdropout rate between (0, 1) .0.0
revinboolif True uses Reverse Instance Normalization on insample_y and applies it to the outputs.True
lossPyTorch moduleinstantiated train loss class from losses collection.MAE()
valid_lossPyTorch moduleinstantiated valid loss class from losses collection.None
max_stepsintmaximum number of training steps.1000
learning_ratefloatLearning rate between (0, 1).0.001
num_lr_decaysintNumber of learning rate decays, evenly distributed across max_steps.-1
early_stop_patience_stepsintNumber of validation iterations before early stopping.-1
val_check_stepsintNumber of training steps between every validation loss check.100
batch_sizeintnumber of different series in each batch.32
valid_batch_sizeintnumber of different series in each validation and test batch, if None uses batch_size.None
windows_batch_sizeintnumber of windows to sample in each training batch.32
inference_windows_batch_sizeintnumber of windows to sample in each inference batch, -1 uses all.32
start_padding_enabledboolif True, the model will pad the time series with zeros at the beginning, by input size.False
training_data_availability_thresholdUnion[float, List[float]]minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior).0.0
step_sizeintstep size between each window of temporal data.1
scaler_typestrtype of scaler for temporal inputs normalization see temporal scalers.‘identity’
random_seedintrandom_seed for pytorch initializer and numpy generators.1
drop_last_loaderboolif True TimeSeriesDataLoader drops last non-full batch.False
aliasstroptional, Custom name of the model.None
optimizerSubclass of ‘torch.optim.Optimizer’optional, user specified optimizer instead of the default choice (Adam).None
optimizer_kwargsdictoptional, list of parameters used by the user specified optimizer.None
lr_schedulerSubclass of ‘torch.optim.lr_scheduler.LRScheduler’optional, user specified lr_scheduler instead of the default choice (StepLR).None
lr_scheduler_kwargsdictoptional, list of parameters used by the user specified lr_scheduler.None
dataloader_kwargsdictoptional, list of parameters passed into the PyTorch Lightning dataloader by the TimeSeriesDataLoader.None
**trainer_kwargsintkeyword trainer arguments inherited from PyTorch Lighning’s trainer.

TSMixerx.fit

fit(
    dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None
)
Fit. The fit method, optimizes the neural network’s weights using the initialization parameters (learning_rate, windows_batch_size, …) and the loss function as defined during the initialization. Within fit we use a PyTorch Lightning Trainer that inherits the initialization’s self.trainer_kwargs, to customize its inputs, see PL’s trainer arguments. The method is designed to be compatible with SKLearn-like classes and in particular to be compatible with the StatsForecast library. By default the model is not saving training checkpoints to protect disk memory, to get them change enable_checkpointing=True in __init__. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
val_sizeintValidation size for temporal cross-validation.0
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
test_sizeintTest size for temporal cross-validation.0
Returns:
TypeDescription
None

TSMixerx.predict

predict(
    dataset,
    test_size=None,
    step_size=1,
    random_seed=None,
    quantiles=None,
    h=None,
    explainer_config=None,
    **data_module_kwargs
)
Predict. Neural network prediction with PL’s Trainer execution of predict_step. Parameters:
NameTypeDescriptionDefault
datasetTimeSeriesDatasetNeuralForecast’s TimeSeriesDataset, see documentation.required
test_sizeintTest size for temporal cross-validation.None
step_sizeintStep size between each window.1
random_seedintRandom seed for pytorch initializer and numpy generators, overwrites model.init’s.None
quantileslistTarget quantiles to predict.None
hintPrediction horizon, if None, uses the model’s fitted horizon. Defaults to None.None
explainer_configdictconfiguration for explanations.None
**data_module_kwargsdictPL’s TimeSeriesDataModule args, see documentation.
Returns:
TypeDescription
None

Usage Examples

Train model and forecast future values with predict method.
import pandas as pd
import matplotlib.pyplot as plt

from neuralforecast import NeuralForecast
from neuralforecast.models import TSMixerx
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
from neuralforecast.losses.pytorch import GMM

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test

model = TSMixerx(h=12,
                input_size=24,
                n_series=2,
                stat_exog_list=['airline1'],
                futr_exog_list=['trend'],
                n_block=4,
                ff_dim=4,
                revin=True,
                scaler_type='robust',
                max_steps=500,
                early_stop_patience_steps=-1,
                val_check_steps=5,
                learning_rate=1e-3,
                loss = GMM(n_components=10, weighted=True),
                batch_size=32
                )

fcst = NeuralForecast(models=[model], freq='ME')
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = fcst.predict(futr_df=Y_test_df)

# Plot predictions
fig, ax = plt.subplots(1, 1, figsize = (20, 7))
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['TSMixerx-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:], 
                 y1=plot_df['TSMixerx-lo-90'][-12:].values,
                 y2=plot_df['TSMixerx-hi-90'][-12:].values,
                 alpha=0.4, label='level 90')
ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Year', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()
Using cross_validation to forecast multiple historic values.
fcst = NeuralForecast(models=[model], freq='M')
forecasts = fcst.cross_validation(df=AirPassengersPanel, static_df=AirPassengersStatic, n_windows=2, step_size=12)

# Plot predictions
fig, ax = plt.subplots(1, 1, figsize = (20, 7))
Y_hat_df = forecasts.loc['Airline1']
Y_df = AirPassengersPanel[AirPassengersPanel['unique_id']=='Airline1']

plt.plot(Y_df['ds'], Y_df['y'], c='black', label='True')
plt.plot(Y_hat_df['ds'], Y_hat_df['TSMixerx-median'], c='blue', label='Forecast')
ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Year', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()

2. Auxiliary Functions

2.1 Mixing layers

A mixing layer consists of a sequential time- and feature Multi Layer Perceptron (MLP).

MixingLayerWithStaticExogenous

MixingLayerWithStaticExogenous(h, dropout, ff_dim, stat_input_size)
Bases: Module MixingLayerWithStaticExogenous

MixingLayer

MixingLayer(in_features, out_features, h, dropout, ff_dim)
Bases: Module MixingLayer

FeatureMixing

FeatureMixing(in_features, out_features, h, dropout, ff_dim)
Bases: Module FeatureMixing

TemporalMixing

TemporalMixing(num_features, h, dropout)
Bases: Module TemporalMixing

2.2 Reversible InstanceNormalization

An Instance Normalization Layer that is reversible, based on this reference implementation.