statsforecast.models
AutoARIMA
d
(Optional[int], optional): Order of first-differencing.D
(Optional[int], optional): Order of seasonal-differencing.max_p
(int, default=5): Max autorregresives p.max_q
(int, default=5): Max moving averages q.max_P
(int, default=2): Max seasonal autorregresives P.max_Q
(int, default=2): Max seasonal moving averages Q.max_order
(int, default=5): Max p+q+P+Q value if not stepwise selection.max_d
(int, default=2): Max non-seasonal differences.max_D
(int, default=1): Max seasonal differences.start_p
(int, default=2): Starting value of p in stepwise procedure.start_q
(int, default=2): Starting value of q in stepwise procedure.start_P
(int, default=1): Starting value of P in stepwise procedure.start_Q
(int, default=1): Starting value of Q in stepwise procedure.stationary
(bool, default=False): If True, restricts search to stationary models.seasonal
(bool, default=True): If False, restricts search to non-seasonal models.ic
(str, default=“aicc”): Information criterion to be used in model selection.stepwise
(bool, default=True): If True, will do stepwise selection (faster).nmodels
(int, default=94): Number of models considered in stepwise search.trace
(bool, default=False): If True, the searched ARIMA models is reported.approximation
(Optional[bool], default=False): If True, conditional sums-of-squares estimation, final MLE.method
(Optional[str], optional): Fitting method between maximum likelihood or sums-of-squares.truncate
(Optional[bool], optional): Observations truncated series used in model selection.test
(str, default=“kpss”): Unit root test to use. See ndiffs
for details.test_kwargs
(Optional[str], optional): Unit root test additional arguments.seasonal_test
(str, default=“seas”): Selection method for seasonal differences.seasonal_test_kwargs
(Optional[dict], optional): Seasonal unit root test arguments.allowdrift
(bool, default=True): If True, drift models terms considered.allowmean
(bool, default=True): If True, non-zero mean models considered.blambda
(Optional[float], optional): Box-Cox transformation parameter.biasadj
(bool, default=False): Use adjusted back-transformed mean Box-Cox.season_length
(int, default=1): Number of observations per unit of time. Ex: 24 Hourly data.alias
(str, default=“AutoARIMA”): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.This implementation is a mirror of Hyndman’s forecast::auto.arima. References: Rob J. Hyndman, Yeasmin Khandakar (2008). “Automatic Time Series Forecasting: The forecast package for R”.
__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoARIMA
: AutoARIMA fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenpus of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x) optional exogenous.level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.AutoETS
model
string parameter defines the ETS equations: E in [], T in [], and S in [].
For example when model=‘ANN’ (additive error, no trend, and no seasonality), ETS will explore only a simple exponential smoothing.
If the component is selected as ‘Z’, it operates as a placeholder to ask the AutoETS model to figure out the best parameter.
Args:
season_length
(int, default=1): Number of observations per unit of time. Ex: 24 Hourly data.model
(str, default=“ZZZ”): Controlling state-space-equations.damped
(bool, optional): A parameter that ‘dampens’ the trend.phi
(float, optional): Smoothing parameter for trend damping. Only used when damped=True
.alias
(str, default=“AutoETS”): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.This implementation is a mirror of Hyndman’s forecast::ets. References: Rob J. Hyndman, Yeasmin Khandakar (2008). “Automatic Time Series Forecasting: The forecast package for R”. Hyndman, Rob, et al (2008). “Forecasting with exponential smoothing: the state space approach”.
__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoETS
: Exponential Smoothing fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenpus of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenpus of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenpus of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.AutoCES
model
string parameter defines the kind of CES model: for simple CES (withous seasonality), for simple seasonality (lagged CES), for partial seasonality (without complex part), for full seasonality (lagged CES with real and complex seasonal parts).
If the component is selected as ‘Z’, it operates as a placeholder to ask the AutoCES model to figure out the best parameter.
Args:
season_length
(int, default=1): Number of observations per unit of time. Ex: 24 Hourly data.model
(str, default=“Z”): Controlling state-space-equations.alias
(str, default=“CES”): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.[Svetunkov, Ivan & Kourentzes, Nikolaos. (2015). "Complex Exponential Smoothing". 10.13140/RG.2.1.3757.2562. ](https
: //onlinelibrary.wiley.com/doi/full/10.1002/nav.22074).__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoCES
: Complex Exponential Smoothing fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenpus of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenpus of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.AutoTheta
season_length
(int, default=1): Number of observations per unit of time. Ex: 24 Hourly data.decomposition_type
(str, default=“multiplicative”): Sesonal decomposition type, ‘multiplicative’ (default) or ‘additive’.model
(Optional[str], optional): Controlling Theta Model. By default searchs the best model.alias
(str, default=“AutoTheta”): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.[Jose A. Fiorucci, Tiago R. Pellegrini, Francisco Louzada, Fotios Petropoulos, Anne B. Koehler (2016). "Models for optimising the theta method and their relationship to state space models". International Journal of Forecasting](https
: //www.sciencedirect.com/science/article/pii/S0169207016300243)__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoTheta
: AutoTheta fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.AutoMFLES
test_size
(int): Forecast horizon used during cross validation.season_length
(int or list of int, optional, default=None): Number of observations per unit of time. Ex: 24 Hourly data.n_windows
(int, default=2): Number of windows used for cross validation.config
(dict, optional, default=None): Mapping from parameter name (from the init arguments of MFLES) to a list of values to try. If None
, will use defaults.step_size
(int, optional, default=None): Step size between each cross validation window. If None
will be set to test_size.metric
(str, default=‘smape’): Metric used to select the best model. Possible options are: ‘smape’, ‘mape’, ‘mse’ and ‘mae’.verbose
(bool, default=False): Print debugging information.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. This is required for generating future prediction intervals.alias
(str, default=‘AutoMFLES’): Custom name of the model.__init__
fit
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional, default=None): Exogenous of shape (t, n_x).AutoMFLES
: Fitted AutoMFLES object.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (t, ).h
(int): Forecast horizon.X
(array-like, optional): Insample exogenous of shape (t, n_x).X_future
(array-like, optional): Exogenous of shape (h, n_x).level
(List[int], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional, default=None): Exogenous of shape (h, n_x).level
(List[int], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[int], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.AutoTBATS
seasonal_periods
(int or list of int): Number of observations per unit of time. Ex: 24 Hourly data.use_boxcox
(bool, default=None): Whether or not to use a Box-Cox transformation. By default tries both.bc_lower_bound
(float, default=0.0): Lower bound for the Box-Cox transformation.bc_upper_bound
(float, default=1.0): Upper bound for the Box-Cox transformation.use_trend
(bool, default=None): Whether or not to use a trend component. By default tries both.use_damped_trend
(bool, default=None): Whether or not to dampen the trend component. By default tries both.use_arma_errors
(bool, default=True): Whether or not to use a ARMA errors. Default is True and this evaluates both models.alias
(str): Custom name of the model.__init__
fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(numpy.array, optional, default=None): Ignoredself
: TBATS model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.ARIMA
order
(tuple, default=(0, 0, 0)): A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are the AR order, the degree of differencing, and the MA order.season_length
(int, default=1): Number of observations per unit of time. Ex: 24 Hourly data.seasonal_order
(tuple, default=(0, 0, 0)): A specification of the seasonal part of the ARIMA model. (P, D, Q) for the AR order, the degree of differencing, the MA order.include_mean
(bool, default=True): Should the ARIMA model include a mean term? The default is True for undifferenced series, False for differenced ones (where a mean would not affect the fit nor predictions).include_drift
(bool, default=False): Should the ARIMA model include a linear drift term? (i.e., a linear regression with ARIMA errors is fitted.)include_constant
(bool, optional, default=None): If True, then includ_mean is set to be True for undifferenced series and include_drift is set to be True for differenced series. Note that if there is more than one difference taken, no constant is included regardless of the value of this argument. This is deliberate as otherwise quadratic and higher order polynomial trends would be induced.blambda
(float, optional, default=None): Box-Cox transformation parameter.biasadj
(bool, default=False): Use adjusted back-transformed mean Box-Cox.method
(str, default=‘CSS-ML’): Fitting method: maximum likelihood or minimize conditional sum-of-squares. The default (unless there are missing values) is to use conditional-sum-of-squares to find starting values, then maximum likelihood.fixed
(dict, optional, default=None): Dictionary containing fixed coefficients for the arima model. Example: {'ar1': 0.5, 'ma2': 0.75}
. For autoregressive terms use the ar{i}
keys. For its seasonal version use sar{i}
. For moving average terms use the ma{i}
keys. For its seasonal version use sma{i}
. For intercept and drift use the intercept
and drift
keys. For exogenous variables use the ex_{i}
keys.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).self
: Fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x) optional exogenous.level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.AutoRegressive
lags
(int or list): Number of lags to include in the model. If an int is passed then all lags up to lags
are considered. If a list, only the elements of the list are considered as lags.include_mean
(bool, default=True): Should the AutoRegressive model include a mean term? The default is True for undifferenced series, False for differenced ones (where a mean would not affect the fit nor predictions).include_drift
(bool, default=False): Should the AutoRegressive model include a linear drift term? (i.e., a linear regression with AutoRegressive errors is fitted.)blambda
(float, optional, default=None): Box-Cox transformation parameter.biasadj
(bool, default=False): Use adjusted back-transformed mean Box-Cox.method
(str, default=‘CSS-ML’): Fitting method: maximum likelihood or minimize conditional sum-of-squares. The default (unless there are missing values) is to use conditional-sum-of-squares to find starting values, then maximum likelihood.fixed
(dict, optional, default=None): Dictionary containing fixed coefficients for the AutoRegressive model. Example: {'ar1': 0.5, 'ar5': 0.75}
. For autoregressive terms use the ar{i}
keys.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).self
: Fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x) optional exogenous.level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.SimpleExponentialSmoothing
alpha
(float): Smoothing parameter.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).self
: SimpleExponentialSmoothing fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
dict
: Dictionary with entries fitted
for point predictions.SimpleExponentialSmoothingOptimized
alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. This is required for generating future prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Parameters
---------- y : numpy.array Clean time series of shape (t, ). X : array-like Optional exogenous of shape (t, n_x).
Returns
------- self : SimpleExponentialSmoothingOptimized fitted model.
forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Parameters
---------- y : numpy.array Clean time series of shape (n, ). h : int Forecast horizon. X : array-like Optional insample exogenous of shape (t, n_x). X_future : array-like Optional exogenous of shape (h, n_x). level : List[float] Confidence levels (0-100) for prediction intervals. fitted : bool Whether or not to return insample predictions.
Returns
------- forecasts : dict Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.
new
predict
h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
dict
: Dictionary with entries fitted
for point predictions.SeasonalExponentialSmoothing
This method is an extremely simplified of Holt-Winter’s method where the trend and level are set to zero. And a single seasonal smoothing parameter is shared across seasons. References: - Charles. C. Holt (1957). “Forecasting seasonals and trends by exponentially weighted moving averages”, ONR Research Memorandum, Carnegie Institute of Technology 52.. - Peter R. Winters (1960). “Forecasting sales by exponentially weighted moving averages”. Management Science.Args:
alpha
(float): Smoothing parameter.season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. This is required for generating future prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).SeasonalExponentialSmoothing
: SeasonalExponentialSmoothing fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
dict
: Dictionary with entries fitted
for point predictions.SeasonalExponentialSmoothingOptimized
__init__
This method is an extremely simplified of Holt-Winter’s method where the trend and level are set to zero. And a single seasonal smoothing parameter is shared across seasons. References: - Charles. C. Holt (1957). “Forecasting seasonals and trends by exponentially weighted moving averages”, ONR Research Memorandum, Carnegie Institute of Technology 52.. - Peter R. Winters (1960). “Forecasting sales by exponentially weighted moving averages”. Management Science.Args:
season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. This is required for generating future prediction intervals.fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).SeasonalExponentialSmoothingOptimized
: SeasonalExponentialSmoothingOptimized fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
dict
: Dictionary with entries fitted
for point predictions.Holt
ETS
model with additive (A) or multiplicative (M) errors (so either ‘AAN’ or ‘MAN’).
References:
Args:
season_length
(int): Number of observations per unit of time. Ex: 12 Monthly data.error_type
(str): The type of error of the ETS model. Can be additive (A) or multiplicative (M).alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoETS
: Exponential Smoothing fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenpus of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenpus of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenpus of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.HoltWinters
ETS
model with additive (A) or multiplicative (M) errors (so either ‘AAA’ or ‘MAM’).
References:
Args:
season_length
(int): Number of observations per unit of time. Ex: 12 Monthly data.error_type
(str): The type of error of the ETS model. Can be additive (A) or multiplicative (M).alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoETS
: Exponential Smoothing fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenpus of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenpus of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenpus of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.HistoricAverage
__init__
alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).self
: HistoricAverage fitted model. rforecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.X_future
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.fitted
(bool, optional): Whether or not to return insample predictions. Defaults to False.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries fitted
for point predictions.Naive
__init__
alias
(str, optional): Custom name of the model. Defaults to “Naive”.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals. Defaults to None.fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).self
: Naive fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n,).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n,).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions.RandomWalkWithDrift
__init__
alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).self
: RandomWalkWithDrift fitted model. rforecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n,).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.SeasonalNaive
__init__
season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).self
: SeasonalNaive fitted model. rforecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n,).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions. rWindowAverage
__init__
window_size
(int): Size of truncated series on which average is estimated.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. This is required for generating future prediction intervals. rfit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).self
: WindowAverage fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(Optional[np.ndarray]): Optional insample exogenous of shape (t, n_x).X_future
(Optional[np.ndarray]): Optional exogenous of shape (h, n_x).level
(Optional[List[int]]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(numpy.array): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.SeasonalWindowAverage
__init__
season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data.window_size
(int): Size of truncated series on which average is estimated.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. This is required for generating future prediction intervals. rfit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(np.ndarray): Clean time series of shape (t, ).X
(Optional[np.ndarray]): Optional exogenous of shape (t, n_x).SeasonalWindowAverage
: SeasonalWindowAverage fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n,).h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.X_future
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels for prediction intervals. Defaults to None.fitted
(bool, optional): Whether or not to return insample predictions. Defaults to False.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray]): Optional insample exogenous of shape (t, n_x).level
(Optional[List[int]]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(Optional[List[int]]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.ADIDA
__init__
alias
(str, optional): Custom name of the model. Defaults to “ADIDA”.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals. Defaults to None.fit
y
.
Args:
y
(np.ndarray): Clean time series of shape (t, ).X
(Optional[np.ndarray], optional): Optional exogenous variables. Defaults to None.ADIDA
: ADIDA fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n,).h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.X_future
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.fitted
(bool, optional): Whether or not to return insample predictions. Defaults to False.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.CrostonClassic
__init__
alias
(str, optional): Custom name of the model. Defaults to “CrostonClassic”.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals. Defaults to None.fit
y
.
Args:
y
(np.ndarray): Clean time series of shape (t, ).X
(Optional[np.ndarray], optional): Optional exogenous variables. Defaults to None.CrostonClassic
: CrostonClassic fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.X_future
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.fitted
(bool, optional): Whether or not returns insample predictions. Defaults to False.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.CrostonOptimized
__init__
alias
(str, optional): Custom name of the model. Defaults to “CrostonOptimized”.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. This is required for generating future prediction intervals. Defaults to None.fit
y
.
Args:
y
(np.ndarray): Clean time series of shape (t, ).X
(Optional[np.ndarray], optional): Optional exogenous variables. Defaults to None.CrostonOptimized
: CrostonOptimized fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.X_future
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.fitted
(bool, optional): Whether or not returns insample predictions. Defaults to False.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.CrostonSBA
__init__
alias
(str, optional): Custom name of the model. Defaults to “CrostonSBA”.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals. Defaults to None.fit
y
.
Args:
y
(np.ndarray): Clean time series of shape (t, ).X
(Optional[np.ndarray], optional): Optional exogenous variables. Defaults to None.CrostonSBA
: CrostonSBA fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.X_future
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.fitted
(bool, optional): Whether or not to return insample predictions. Defaults to False.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(Optional[List[int]], optional): Confidence levels (0-100) prediction intervals. Defaults to None.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.IMAPA
__init__
alias
(str, optional): Custom name of the model. Defaults to “IMAPA”.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals. Defaults to None.fit
y
.
Args:
y
(np.ndarray): Clean time series of shape (t, ).X
(Optional[np.ndarray], optional): Optional exogenous variables. Defaults to None.IMAPA
: IMAPA fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(np.ndarray): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional insample exogenous of shape (t, n_x). Defaults to None.X_future
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.fitted
(bool, optional): Whether or not to return insample predictions. Defaults to False.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.TSB
__init__
alpha_d
(float): Smoothing parameter for demand.alpha_p
(float): Smoothing parameter for probability.alias
(str, optional): Custom name of the model. Defaults to “TSB”.prediction_intervals
(Optional[ConformalIntervals], optional): Information to compute conformal prediction intervals. This is required for generating future prediction intervals. Defaults to None.fit
y
.
Args:
y
(np.ndarray): Clean time series of shape (t, ).X
(Optional[np.ndarray], optional): Optional exogenous variables. Defaults to None.TSB
: TSB fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(Optional[np.ndarray], optional): Optional exogenous of shape (h, n_x). Defaults to None.level
(Optional[List[int]], optional): Confidence levels (0-100) for prediction intervals. Defaults to None.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.MSTL
season_length
(Union[int, List[int]]): Number of observations per unit of time. For multiple seasonalities use a list.trend_forecaster
(model, default=AutoETS(model=‘ZZN’)): StatsForecast model used to forecast the trend component.stl_kwargs
(dict): Extra arguments to pass to statsmodels.tsa.seasonal.STL
. The period
and seasonal
arguments are reserved.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).self
: MSTL fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.MFLES
season_length
(int or list of int, optional): Number of observations per unit of time. Ex: 24 Hourly data. Default None.fourier_order
(int, optional): How many fourier sin/cos pairs to create, the larger the number the more complex of a seasonal pattern can be fitted. A lower number leads to smoother results. This is auto-set based on seasonal_period. Default None.max_rounds
(int): The max number of boosting rounds. The boosting will auto-stop but depending on other parameters such as rs_lr you may want more rounds. Generally more rounds means a smoother fit. Default 50.ma
(int, optional): The moving average order to use, this is auto-set based on internal logic. Passing 4 would fit a 4 period moving average on the residual component. Default None.alpha
(float): The alpha which is used in fitting the underlying LASSO when using piecewise functions. Default 1.0.decay
(float): Effects the slopes of the piecewise-linear basis function. Default -1.0.changepoints
(boolean): Whether to fit for changepoints if all other logic allows for it. If False, MFLES will not ever fit a piecewise trend. Default True.n_changepoints
(int or float): Number (if int) or proportion (if float) of changepoint knots to place. The default of 0.25 will place 0.25 * (series length) number of knots. Default 0.25.seasonal_lr
(float): A shrinkage parameter (0 < seasonal_lr <= 1) which penalizes the seasonal fit. A value of 0.9 will flatly multiply the seasonal fit by 0.9 each boosting round, this can be used to allow more signal to the exogenous component. Default 0.9.trend_lr
(float): A shrinkage parameter (0 < trend_lr <= 1) which penalizes the linear trend fit A value of 0.9 will flatly multiply the linear fit by 0.9 each boosting round, this can be used to allow more signal to the seasonality or exogenous components. Default 0.9.exogenous_lr
(float): The shrinkage parameter (0 < exogenous_lr <= 1) which controls how much of the exogenous signal is carried to the next round. Default 1.0.residuals_lr
(float): A shrinkage parameter (0 < residuals_lr <= 1) which penalizes the residual smoothing. A value of 0.9 will flatly multiply the residual fit by 0.9 each boosting round, this can be used to allow more signal to the seasonality or linear components. Default 1.0.cov_threshold
(float): The deseasonalized cov is used to auto-set some logic, lowering the cov_threshold will result in simpler and less complex residual smoothing. If you pass something like 1000 then there will be no safeguards applied. Default 0.7.moving_medians
(bool): The default behavior is to fit an initial median to the time series. If True, then it will fit a median per seasonal period. Default False.min_alpha
(float): The minimum alpha in the SES ensemble. Default 0.05.max_alpha
(float): The maximum alpha used in the SES ensemble. Default 1.0.trend_penalty
(bool): Whether to apply a simple penalty to the linear trend component, very useful for dealing with the potentially dangerous piecewise trend. Default True.multiplicative
(bool, optional): Auto-set based on internal logic. If True, it will simply take the log of the time series. Default None.smoother
(bool): If True, then a simple exponential ensemble will be used rather than auto settings. Default False.robust
(bool, optional): If True then MFLES will fit using more reserved methods, i.e. not using piecewise trend or moving average residual smoother. Auto-set based on internal logic. Default None.verbose
(bool): Print debugging information. Default False.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. This is required for generating future prediction intervals.alias
(str): Custom name of the model. Default ‘MFLES’.__init__
fit
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Exogenous of shape (t, n_x). Default None.self
(MFLES): Fitted MFLES object.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (t, ).h
(int): Forecast horizon.X
(array-like): Insample exogenous of shape (t, n_x).X_future
(array-like): Exogenous of shape (h, n_x).level
(List[int]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions. Default False.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Exogenous of shape (h, n_x). Default None.level
(List[int]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[int]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.TBATS
season_length
(Union[int, List[int]]): Number of observations per unit of time. Ex: 24 Hourly data.use_boxcox
(Optional[bool]): Whether or not to use a Box-Cox transformation. Default True.bc_lower_bound
(float): Lower bound for the Box-Cox transformation. Default 0.0.bc_upper_bound
(float): Upper bound for the Box-Cox transformation. Default 1.0.use_trend
(Optional[bool]): Whether or not to use a trend component. Default True.use_damped_trend
(Optional[bool]): Whether or not to dampen the trend component. Default False.use_arma_errors
(bool): Whether or not to use a ARMA errors. Default False.alias
(str): Custom name of the model. Default ‘TBATS’.__init__
fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(numpy.array, optional, default=None): Ignoredself
: TBATS model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.Theta
season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data. Default 1.decomposition_type
(str): Sesonal decomposition type, ‘multiplicative’ (default) or ‘additive’. Default ‘multiplicative’.alias
(str): Custom name of the model. Default ‘Theta’.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals. Default None.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoTheta
: AutoTheta fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.OptimizedTheta
season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data. Default 1.decomposition_type
(str): Sesonal decomposition type, ‘multiplicative’ (default) or ‘additive’. Default ‘multiplicative’.alias
(str): Custom name of the model. Default ‘OptimizedTheta’.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals. Default None.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoTheta
: AutoTheta fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.DynamicTheta
season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data.decomposition_type
(str): Sesonal decomposition type, ‘multiplicative’ (default) or ‘additive’.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoTheta
: AutoTheta fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.DynamicOptimizedTheta
season_length
(int): Number of observations per unit of time. Ex: 24 Hourly data.decomposition_type
(str): Sesonal decomposition type, ‘multiplicative’ (default) or ‘additive’.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
and optionally exogenous variables (numpy array) X
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like, optional): Optional exogenous of shape (t, n_x).AutoTheta
: AutoTheta fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not returns insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like, optional): Optional insample exogenous of shape (t, n_x).X_future
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.fitted
(bool, default=False): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like, optional): Optional exogenous of shape (h, n_x).level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float], optional): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.GARCH
p
(int): Number of lagged versions of the series.q
(int): Number of lagged versions of the volatility.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).self
: GARCH model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.ARCH
p
(int): Number of lagged versions of the series.alias
(str): Custom name of the model.prediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. By default, the model will compute the native prediction intervals.__init__
fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).self
: GARCH model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not returns insample predictions.forecasts
(dict): Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.forecasts
(dict): Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.SklearnModel
model
(sklearn.base.BaseEstimator): scikit-learn estimatorprediction_intervals
(Optional[ConformalIntervals]): Information to compute conformal prediction intervals. This is required for generating future prediction intervals.alias
(str, optional): Custom name of the model. If None
will use the model’s class.__init__
fit
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Exogenous of shape (t, n_x).SklearnModel
: Fitted SklearnModel object.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (t, ).h
(int): Forecast horizon.X
(array-like): Insample exogenous of shape (t, n_x).X_future
(array-like): Exogenous of shape (h, n_x).level
(List[int]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (t, ).h
(int): Forecast horizon.X
(array-like): Insample exogenous of shape (t, n_x).X_future
(array-like): Exogenous of shape (h, n_x).level
(List[float]): Confidence levels for prediction intervals.fitted
(bool): Whether or not returns insample predictions.dict
: Dictionary with entries constant
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Exogenous of shape (h, n_x).level
(List[int]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[int]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.ConstantModel
__init__
constant
(float): Custom value to return as forecast.alias
(str): Custom name of the model.fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).ConstantModel
: Constant fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n,).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels for prediction intervals.fitted
(bool): Whether or not returns insample predictions.dict
: Dictionary with entries constant
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.ZeroModel
__init__
alias
(str): Custom name of the model.fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).ConstantModel
: Constant fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n,).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels for prediction intervals.fitted
(bool): Whether or not returns insample predictions.dict
: Dictionary with entries constant
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.NaNModel
__init__
alias
(str): Custom name of the model.fit
y
.
Args:
y
(numpy.array): Clean time series of shape (t, ).X
(array-like): Optional exogenous of shape (t, n_x).ConstantModel
: Constant fitted model.forecast
fit_predict
without storing information. It assumes you know the forecast horizon in advance.
Args:
y
(numpy.array): Clean time series of shape (n,).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.fitted
(bool): Whether or not to return insample predictions.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.forward
y
(numpy.array): Clean time series of shape (n, ).h
(int): Forecast horizon.X
(array-like): Optional insample exogenous of shape (t, n_x).X_future
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels for prediction intervals.fitted
(bool): Whether or not returns insample predictions.dict
: Dictionary with entries constant
for point predictions and level_*
for probabilistic predictions.new
predict
h
(int): Forecast horizon.X
(array-like): Optional exogenous of shape (h, n_x).level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries mean
for point predictions and level_*
for probabilistic predictions.predict_in_sample
level
(List[float]): Confidence levels (0-100) for prediction intervals.dict
: Dictionary with entries fitted
for point predictions and level_*
for probabilistic predictions.