module statsforecast.utils
Global Variables
- NOGIL
- CACHE
- AirPassengers
function generate_series
n_series of frequency freq of different lengths in the interval [min_length, max_length]. If n_static_features > 0, then each series gets static features with random values. If equal_ends == True then all series end at the same date.
Args:
n_series(int): Number of series for synthetic panel.freq(str, optional): Frequency of the data, ‘D’ or ‘M’. Defaults to ‘D’.min_length(int, optional): Minimum length of synthetic panel’s series. Defaults to 50.max_length(int, optional): Maximum length of synthetic panel’s series. Defaults to 500.n_static_features(int, optional): Number of static exogenous variables for synthetic panel’s series. Defaults to 0.equal_ends(bool, optional): Series should end in the same date stampds. Defaults to False.engine(str, optional): Output Dataframe type (‘pandas’ or ‘polars’). Defaults to ‘pandas’.seed(int, optional): Random seed used for generating the data. Defaults to 0.
DataFrame: Synthetic panel with columns [unique_id,ds,y] and exogenous.
class results
results(x, fn, nit, simplex)
class ConformalIntervals
Class for storing conformal intervals metadata information.
Args:
n_windows(int, optional): Number of windows for conformal intervals. Defaults to 2.h(int, optional): Forecasting horizon. Defaults to 1.method(str, optional): Method for conformal intervals. Defaults to “conformal_distribution”.

