Announcement: Nixtla Enterprise now offers top foundation models, MCP, and agentic capabilities: join the waitlist
statsforecast.thetainitparamthetainitparamtheta(
initial_smoothed: float,
alpha: float,
theta: float,
y: ndarray,
modeltype: ModelType
)
switch_thetaswitch_theta(model: str) → ModelType
optimize_theta_target_fnoptimize_theta_target_fn(
init_par: dict[str, float],
optimize_params: dict[str, bool],
y: ndarray,
modeltype: ModelType,
nmse: int
)
thetamodelthetamodel(
y: ndarray,
m: int,
modeltype: str,
initial_smoothed: float,
alpha: float,
theta: float,
nmse: int
)
compute_pi_samplescompute_pi_samples(
n,
h,
states,
sigma,
alpha,
theta,
mean_y,
seed=0,
n_samples=200
)
forecast_thetaforecast_theta(obj, h, level=None)
auto_thetaauto_theta(
y,
m,
model=None,
initial_smoothed=None,
alpha=None,
theta=None,
nmse=3,
decomposition_type='multiplicative'
)
forward_thetaforward_theta(fitted_model, y)
Was this page helpful?