Leverage StatsForecast models to create featuresSome models create internal representations of the series that can be useful for other models to use as inputs. One example is the
MSTL
model, which decomposes the series into trend and seasonal components.
This guide shows you how to use the mstl_decomposition
function to
extract those features for training and then use their future values for
inference.
unique_id | ds | y | |
---|---|---|---|
0 | H1 | 1 | 605.0 |
1 | H1 | 2 | 586.0 |
2 | H1 | 3 | 586.0 |
3 | H1 | 4 | 559.0 |
4 | H1 | 5 | 511.0 |
unique_id | ds | y | trend | seasonal | |
---|---|---|---|---|---|
0 | H1 | 1 | 605.0 | 502.872910 | 131.419934 |
1 | H1 | 2 | 586.0 | 507.873456 | 93.100015 |
2 | H1 | 3 | 586.0 | 512.822533 | 82.155386 |
3 | H1 | 4 | 559.0 | 517.717481 | 42.412749 |
4 | H1 | 5 | 511.0 | 522.555849 | -11.401890 |
unique_id | ds | trend | seasonal | |
---|---|---|---|---|
0 | H1 | 701 | 643.801348 | -29.189627 |
1 | H1 | 702 | 644.328207 | -99.680432 |
2 | H1 | 703 | 644.749693 | -141.169014 |
3 | H1 | 704 | 645.086883 | -173.325625 |
4 | H1 | 705 | 645.356634 | -195.862530 |
unique_id | ds | ARIMA | |
---|---|---|---|
0 | H1 | 701 | 612.737668 |
1 | H1 | 702 | 542.851796 |
2 | H1 | 703 | 501.931839 |
3 | H1 | 704 | 470.248289 |
4 | H1 | 705 | 448.115839 |