statsforecast.core
GroupedArray
__init__
cross_validation
fit
fit_predict
forecast
predict
split
split_fm
take
ParallelBackend
cross_validation
forecast
StatsForecast
__init__
models
(List[Any]): List of instantiated objects models.StatsForecast.freq
(str or int): Frequency of the data. Must be a valid pandas or polars offset alias, or an integer.n_jobs
(int): Number of jobs used in the parallel processing, use -1 for all cores. Defaults to 1.df
(pandas or polars DataFrame): DataFrame with ids, times, targets and exogenous.fallback_model
(Any, optional): Model to be used if a model fails. Only works with the forecast
and cross_validation
methods. Defaults to None.verbose
(bool): Prints TQDM progress bar when n_jobs=1
. Defaults to True.cross_validation
cross_validation_fitted_values
StatsForecast.cross_validation
, you can access the insample prediction values for each model and window. To get them, you need to pass fitted=True
to the StatsForecast.cross_validation
method and then use the StatsForecast.cross_validation_fitted_values
method.
Returns:
pandas or polars DataFrame
: DataFrame with insample models
columns for point predictions and probabilistic predictions for all fitted models
.fit
models
to a large set of time series from DataFrame df
and store fitted models for later inspection.
Args:
df
(pandas or polars DataFrame): DataFrame with ids, times, targets and exogenous.prediction_intervals
(ConformalIntervals, optional): Configuration to calibrate prediction intervals (Conformal Prediction). Defaults to None.id_col
(str): Column that identifies each serie. Defaults to ‘unique_id’.time_col
(str): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.target_col
(str): Column that contains the target. Defaults to ‘y’.StatsForecast
: Returns with stored StatsForecast
fitted models
.fit_predict
fit_predict
without storing information. It requires the forecast horizon h
in advance.
In contrast to StatsForecast.forecast
this method stores partial models outputs.
Args:
h
(int): Forecast horizon.df
(pandas or polars DataFrame): DataFrame with ids, times, targets and exogenous.X_df
(pandas or polars DataFrame, optional): DataFrame with ids, times and future exogenous. Defaults to None.level
(List[float], optional): Confidence levels between 0 and 100 for prediction intervals. Defaults to None.prediction_intervals
(ConformalIntervals, optional): Configuration to calibrate prediction intervals (Conformal Prediction). Defaults to None.id_col
(str): Column that identifies each serie. Defaults to ‘unique_id’.time_col
(str): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.target_col
(str): Column that contains the target. Defaults to ‘y’.pandas or polars DataFrame
: DataFrame with models
columns for point predictions and probabilistic predictions for all fitted models
.forecast
forecast_fitted_values
load
path
(str or pathlib.Path): Path to saved StatsForecast file.StatsForecast
: Previously saved StatsForecastplot
df
(pandas or polars DataFrame): DataFrame with ids, times, targets and exogenous.forecasts_df
(pandas or polars DataFrame, optional): DataFrame ids, times and models. Defaults to None.unique_ids
(list of str, optional): ids to plot. If None, they’re selected randomly. Defaults to None.plot_random
(bool): Select time series to plot randomly. Defaults to True.models
(List[str], optional): List of models to plot. Defaults to None.level
(List[float], optional): List of prediction intervals to plot if paseed. Defaults to None.max_insample_length
(int, optional): Max number of train/insample observations to be plotted. Defaults to None.plot_anomalies
(bool): Plot anomalies for each prediction interval. Defaults to False.engine
(str): Library used to plot. ‘plotly’, ‘plotly-resampler’ or ‘matplotlib’. Defaults to ‘matplotlib’.id_col
(str): Column that identifies each serie. Defaults to ‘unique_id’.time_col
(str): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.target_col
(str): Column that contains the target. Defaults to ‘y’.resampler_kwargs
(dict): Kwargs to be passed to plotly-resampler constructor. For further custumization (“show_dash”) call the method, store the plotting object and add the extra arguments to its show_dash
method.predict
models
to predict large set of time series from DataFrame df
.
Args:
h
(int): Forecast horizon.X_df
(pandas or polars DataFrame, optional): DataFrame with ids, times and future exogenous. Defaults to None.level
(List[float], optional): Confidence levels between 0 and 100 for prediction intervals. Defaults to None.pandas or polars DataFrame
: DataFrame with models
columns for point predictions and probabilistic predictions for all fitted models
.save
path
(str or pathlib.Path, optional): Path of the file to be saved. If None
will create one in the current directory using the current UTC timestamp. Defaults to None.max_size
(str, optional): StatsForecast object should not exceed this size.Available byte naming
: [‘B’, ‘KB’, ‘MB’, ‘GB’]. Defaults to None.trim
(bool): Delete any attributes not needed for inference. Defaults to False.