module statsforecast.adapters.prophet
class AutoARIMAProphet
AutoARIMAProphet adapter.
Returns best ARIMA model using external variables created by the Prophet interface. This class receives as parameters the same as prophet.Prophet and uses a models.AutoARIMA backend.
If your forecasting pipeline uses Prophet the AutoARIMAProphet adapter helps to easily substitute Prophet with an AutoARIMA.
Args:
growth(str, default=“linear”): ‘linear’, ‘logistic’ or ‘flat’ to specify a linear, logistic or flat trend.changepoints(List of dates, default=None): Potential changepoints. Otherwise selected automatically.n_changepoints(int, default=25): Number of potential changepoints to include.changepoint_range(float, default=0.8): Proportion of history in which trend changepoints will be estimated.yearly_seasonality(str, bool or int, default=“auto”): Fit yearly seasonality. Can be ‘auto’, True, False, or a number of Fourier terms to generate.weekly_seasonality(str, bool or int, default=“auto”): Fit weekly seasonality. Can be ‘auto’, True, False, or a number of Fourier terms to generate.daily_seasonality(str, bool or int, default=“auto”): Fit daily seasonality. Can be ‘auto’, True, False, or a number of Fourier terms to generate.holidays(pandas.DataFrame, default=None): DataFrame with columns holiday (string) and ds (date type).interval_width(float, default=0.80): Uncertainty forecast intervals width.StatsForecast’s level
You can create automated exogenous variables from the Prophet data processing pipeline these exogenous will be included intoAutoARIMA’s exogenous features. Parameters likeseasonality_mode,seasonality_prior_scale,holidays_prior_scale,changepoint_prior_scale,mcmc_samples,uncertainty_samples,stan_backendare Prophet exclusive. References: Sean J. Taylor, Benjamin Letham (2017). “Prophet Forecasting at Scale” Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir, Ram Rajagopal (2021). “NeuralProphet: Explainable Forecasting at Scale”. Rob J. Hyndman, Yeasmin Khandakar (2008). “Automatic Time Series Forecasting: The forecast package for R”.
method __init__
method fit
df(pandas.DataFrame): DataFrame with columns ds (date type) and y, the time series.disable_seasonal_features(bool, default=True): Disable Prophet’s seasonal features.
AutoARIMAProphet: Adapter object withAutoARIMAfitted model.
method predict
df(pandas.DataFrame, default=None): DataFrame with columns ds (date type) and y, the time series.
pandas.DataFrame: DataFrame with the forecast components.

