Tutorial on how to train neuralforecast models on datasets that cannot fit into memory
unique_id | ds | y | trend | y_[lag12] | |
---|---|---|---|---|---|
0 | Airline1 | 1949-01-31 | 112.0 | 0 | 112.0 |
1 | Airline1 | 1949-02-28 | 118.0 | 1 | 118.0 |
2 | Airline1 | 1949-03-31 | 132.0 | 2 | 132.0 |
3 | Airline1 | 1949-04-30 | 129.0 | 3 | 129.0 |
4 | Airline1 | 1949-05-31 | 121.0 | 4 | 121.0 |
… | … | … | … | … | … |
283 | Airline2 | 1960-08-31 | 906.0 | 283 | 859.0 |
284 | Airline2 | 1960-09-30 | 808.0 | 284 | 763.0 |
285 | Airline2 | 1960-10-31 | 761.0 | 285 | 707.0 |
286 | Airline2 | 1960-11-30 | 690.0 | 286 | 662.0 |
287 | Airline2 | 1960-12-31 | 732.0 | 287 | 705.0 |
id_col | airline1 | airline2 | |
---|---|---|---|
0 | Airline1 | 0 | 1 |
1 | Airline2 | 1 | 0 |
fit
method.
futr_df
DataFrame.
For the below prediction we are assuming we only want to predict the
next 12 timesteps for Airline2.
id_col | ds | NHITS | |
---|---|---|---|
0 | Airline2 | 1960-01-31 | 713.441406 |
1 | Airline2 | 1960-02-29 | 688.176880 |
2 | Airline2 | 1960-03-31 | 763.382935 |
3 | Airline2 | 1960-04-30 | 745.478027 |
4 | Airline2 | 1960-05-31 | 758.036438 |
5 | Airline2 | 1960-06-30 | 806.288574 |
6 | Airline2 | 1960-07-31 | 869.563782 |
7 | Airline2 | 1960-08-31 | 858.105896 |
8 | Airline2 | 1960-09-30 | 803.531555 |
9 | Airline2 | 1960-10-31 | 751.093079 |
10 | Airline2 | 1960-11-30 | 700.435852 |
11 | Airline2 | 1960-12-31 | 746.640259 |
metric | NHITS | |
---|---|---|
0 | mae | 20.728617 |
1 | rmse | 26.980698 |
2 | smape | 0.012879 |