mlflow.pytorch.autolog(checkpoint=False)
with mlflow.start_run() as run:
# Log the dataset to the MLflow Run. Specify the "training" context to indicate that the
# dataset is used for model training
dataset: PandasDataset = mlflow.data.from_pandas(Y_df, source="AirPassengersDF")
mlflow.log_input(dataset, context="training")
# Define and log parameters
horizon = len(Y_test_df)
model_params = dict(
input_size=1 * horizon,
h=horizon,
max_steps=300,
loss=MAE(),
valid_loss=MAE(),
activation='ReLU',
scaler_type='robust',
random_seed=42,
enable_progress_bar=False,
)
mlflow.log_params(model_params)
# Fit NBEATSx model
models = [NBEATSx(**model_params)]
nf = NeuralForecast(models=models, freq='M')
train = nf.fit(df=Y_train_df, val_size=horizon)
# Save conda environment used to run the model
mlflow.pytorch.get_default_conda_env()
# Save pip requirements
mlflow.pytorch.get_default_pip_requirements()
mlflow.pytorch.autolog(disable=True)
# Save the neural forecast model
nf.save(path='./checkpoints/test_run_1/',
model_index=None,
overwrite=True,
save_dataset=True)