AutoRandomForest
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoElasticNet
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoLasso
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoRidge
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoLinearRegression
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoCatboost
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoXGBoost
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoLightGBM
AutoModel
Structure to hold a model and its search space
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
random_forest_space
elastic_net_space
lasso_space
ridge_space
linear_regression_space
catboost_space
xgboost_space
lightgbm_space
AutoModel
| Name | Type | Description | Default |
|---|---|---|---|
model | BaseEstimator | scikit-learn compatible regressor | required |
config | callable | function that takes an optuna trial and produces a configuration | required |
AutoMLForecast
| Name | Type | Description | Default |
|---|---|---|---|
models | list or dict | Auto models to be optimized. | required |
freq | str or int | pandas’ or polars’ offset alias or integer denoting the frequency of the series. | required |
season_length | int | Length of the seasonal period. This is used for producing the feature space. Only required if init_config is None. Defaults to None. | None |
init_config | callable | Function that takes an optuna trial and produces a configuration passed to the MLForecast constructor. Defaults to None. | None |
fit_config | callable | Function that takes an optuna trial and produces a configuration passed to the MLForecast fit method. Defaults to None. | None |
num_threads | int | Number of threads to use when computing the features. Defaults to 1. | 1 |
AutoMLForecast.fit
| Name | Type | Description | Default |
|---|---|---|---|
df | pandas or polars DataFrame | Series data in long format. | required |
n_windows | int | Number of windows to evaluate. | required |
h | int | Forecast horizon. | required |
num_samples | int | Number of trials to run | required |
step_size | int | Step size between each cross validation window. If None it will be equal to h. Defaults to None. | None |
input_size | int | Maximum training samples per serie in each window. If None, will use an expanding window. Defaults to None. | None |
refit | bool or int | Retrain model for each cross validation window. If False, the models are trained at the beginning and then used to predict each window. If positive int, the models are retrained every refit windows. Defaults to False. | False |
loss | callable | Function that takes the validation and train dataframes and produces a float. If None will use the average SMAPE across series. Defaults to None. | None |
id_col | str | Column that identifies each serie. Defaults to ‘unique_id’. | ‘unique_id’ |
time_col | str | Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’. | ‘ds’ |
target_col | str | Column that contains the target. Defaults to ‘y’. | ‘y’ |
study_kwargs | dict | Keyword arguments to be passed to the optuna.Study constructor. Defaults to None. | None |
optimize_kwargs | dict | Keyword arguments to be passed to the optuna.Study.optimize method. Defaults to None. | None |
fitted | bool | Whether to compute the fitted values when retraining the best model. Defaults to False. | False |
prediction_intervals | Optional[PredictionIntervals] | Configuration to calibrate prediction intervals when retraining the best model. | None |
| Type | Description |
|---|---|
AutoMLForecast | object with best models and optimization results |
AutoMLForecast.predict
| Name | Type | Description | Default |
|---|---|---|---|
h | int | Number of periods to predict. | required |
X_df | pandas or polars DataFrame | Dataframe with the future exogenous features. Should have the id column and the time column. Defaults to None. | None |
level | list of ints or floats | Confidence levels between 0 and 100 for prediction intervals. Defaults to None. | None |
| Type | Description |
|---|---|
pandas or polars DataFrame | Predictions for each serie and timestep, with one column per model. |
AutoMLForecast.save
AutoMLForecast.forecast_fitted_values
| Name | Type | Description | Default |
|---|---|---|---|
level | list of ints or floats | Confidence levels between 0 and 100 for prediction intervals. Defaults to None. | None |
| Type | Description |
|---|---|
pandas or polars DataFrame | Dataframe with predictions for the training set |
| unique_id | ds | lgb | lgb-lo-80 | lgb-hi-80 | ridge | ridge-lo-80 | ridge-hi-80 | |
|---|---|---|---|---|---|---|---|---|
| 0 | W1 | 2180 | 35529.435224 | 35061.835362 | 35997.035086 | 36110.921202 | 35880.445097 | 36341.397307 |
| 1 | W1 | 2181 | 35521.764894 | 34973.035617 | 36070.494171 | 36195.175757 | 36051.013811 | 36339.337702 |
| 2 | W1 | 2182 | 35537.417268 | 34960.050939 | 36114.783596 | 36107.528852 | 35784.062169 | 36430.995536 |
| 3 | W1 | 2183 | 35538.058206 | 34823.640706 | 36252.475705 | 36027.139248 | 35612.635725 | 36441.642771 |
| 4 | W1 | 2184 | 35614.611211 | 34627.023739 | 36602.198683 | 36092.858489 | 35389.690977 | 36796.026000 |
| … | … | … | … | … | … | … | … | … |
| 4662 | W99 | 2292 | 15071.536978 | 14484.617399 | 15658.456557 | 15319.146221 | 14869.410567 | 15768.881875 |
| 4663 | W99 | 2293 | 15058.145278 | 14229.686322 | 15886.604234 | 15299.549555 | 14584.269352 | 16014.829758 |
| 4664 | W99 | 2294 | 15042.493434 | 14096.380636 | 15988.606232 | 15271.744712 | 14365.349338 | 16178.140086 |
| 4665 | W99 | 2295 | 15042.144846 | 14037.053904 | 16047.235787 | 15250.070504 | 14403.428791 | 16096.712216 |
| 4666 | W99 | 2296 | 15038.729044 | 13944.821480 | 16132.636609 | 15232.127800 | 14325.059776 | 16139.195824 |
| unique_id | ds | y | lgb | lgb-lo-95 | lgb-hi-95 | ridge | ridge-lo-95 | ridge-hi-95 | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | W1 | 15 | 1071.06 | 1060.584344 | 599.618355 | 1521.550334 | 1076.990151 | 556.535492 | 1597.444810 |
| 1 | W1 | 16 | 1073.73 | 1072.669242 | 611.703252 | 1533.635232 | 1083.633276 | 563.178617 | 1604.087936 |
| 2 | W1 | 17 | 1066.97 | 1072.452128 | 611.486139 | 1533.418118 | 1084.724311 | 564.269652 | 1605.178970 |
| 3 | W1 | 18 | 1066.17 | 1065.837828 | 604.871838 | 1526.803818 | 1080.127197 | 559.672538 | 1600.581856 |
| 4 | W1 | 19 | 1064.43 | 1065.214681 | 604.248691 | 1526.180671 | 1080.636826 | 560.182167 | 1601.091485 |
| … | … | … | … | … | … | … | … | … | … |
| 361881 | W99 | 2279 | 15738.54 | 15887.661228 | 15721.237195 | 16054.085261 | 15927.918181 | 15723.222760 | 16132.613603 |
| 361882 | W99 | 2280 | 15388.13 | 15755.943789 | 15589.519756 | 15922.367823 | 15841.599064 | 15636.903642 | 16046.294485 |
| 361883 | W99 | 2281 | 15187.62 | 15432.224701 | 15265.800668 | 15598.648735 | 15584.462232 | 15379.766811 | 15789.157654 |
| 361884 | W99 | 2282 | 15172.27 | 15177.040831 | 15010.616797 | 15343.464864 | 15396.243223 | 15191.547801 | 15600.938644 |
| 361885 | W99 | 2283 | 15101.03 | 15162.090803 | 14995.666770 | 15328.514836 | 15335.982465 | 15131.287044 | 15540.677887 |
| unique_id | ds | ridge | ridge-lo-80 | ridge-hi-80 |
|---|---|---|---|---|
| str | i64 | f64 | f64 | f64 |
| ”W1” | 2180 | 35046.096663 | 34046.69521 | 36045.498116 |
| ”W1” | 2181 | 34743.269216 | 33325.847975 | 36160.690457 |
| ”W1” | 2182 | 34489.591086 | 32591.254559 | 36387.927614 |
| ”W1” | 2183 | 34270.768179 | 32076.507727 | 36465.02863 |
| ”W1” | 2184 | 34124.021857 | 31352.454121 | 36895.589593 |
| … | … | … | … | … |
| ”W99” | 2292 | 14719.457096 | 13983.308582 | 15455.605609 |
| ”W99” | 2293 | 14631.552077 | 13928.874336 | 15334.229818 |
| ”W99” | 2294 | 14532.905239 | 13642.840118 | 15422.97036 |
| ”W99” | 2295 | 14446.065443 | 13665.088667 | 15227.04222 |
| ”W99” | 2296 | 14363.049604 | 13654.220051 | 15071.879157 |
| unique_id | ds | y | ridge | ridge-lo-95 | ridge-hi-95 |
|---|---|---|---|---|---|
| str | i64 | f64 | f64 | f64 | f64 |
| ”W1” | 14 | 1061.96 | 1249.326428 | 488.765249 | 2009.887607 |
| ”W1” | 15 | 1071.06 | 1246.067836 | 485.506657 | 2006.629015 |
| ”W1” | 16 | 1073.73 | 1254.027897 | 493.466718 | 2014.589076 |
| ”W1” | 17 | 1066.97 | 1254.475948 | 493.914769 | 2015.037126 |
| ”W1” | 18 | 1066.17 | 1248.306754 | 487.745575 | 2008.867933 |
| … | … | … | … | … | … |
| ”W99” | 2279 | 15738.54 | 15754.558812 | 15411.968645 | 16097.148979 |
| ”W99” | 2280 | 15388.13 | 15655.780865 | 15313.190698 | 15998.371032 |
| ”W99” | 2281 | 15187.62 | 15367.498468 | 15024.908301 | 15710.088635 |
| ”W99” | 2282 | 15172.27 | 15172.591423 | 14830.001256 | 15515.18159 |
| ”W99” | 2283 | 15101.03 | 15141.032886 | 14798.44272 | 15483.623053 |

