Hyperparameter optimization
Tune your forecasting models
Imports
import os
import tempfile
import lightgbm as lgb
import optuna
import pandas as pd
from datasetsforecast.m4 import M4, M4Evaluation, M4Info
from sklearn.linear_model import Ridge
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OneHotEncoder
from utilsforecast.plotting import plot_series
from mlforecast import MLForecast
from mlforecast.auto import (
AutoLightGBM,
AutoMLForecast,
AutoModel,
AutoRidge,
ridge_space,
)
from mlforecast.lag_transforms import ExponentiallyWeightedMean, RollingMean
Data setup
def get_data(group, horizon):
df, *_ = M4.load(directory='data', group=group)
df['ds'] = df['ds'].astype('int')
df['unique_id'] = df['unique_id'].astype('category')
return df.groupby('unique_id').head(-horizon).copy()
group = 'Hourly'
horizon = M4Info[group].horizon
train = get_data(group, horizon)
Optimization
Default optimization
We have default search spaces for some models and we can define default features to look for based on the length of the seasonal period of your data. For this example we’ll use hourly data, for which we’ll set 24 (one day) as the season length.
optuna.logging.set_verbosity(optuna.logging.ERROR)
auto_mlf = AutoMLForecast(
models={'lgb': AutoLightGBM(), 'ridge': AutoRidge()},
freq=1,
season_length=24,
)
auto_mlf.fit(
train,
n_windows=2,
h=horizon,
num_samples=2, # number of trials to run
)
AutoMLForecast(models={'lgb': AutoModel(model=LGBMRegressor), 'ridge': AutoModel(model=Ridge)})
We can now use these models to predict
preds = auto_mlf.predict(horizon)
preds.head()
unique_id | ds | lgb | ridge | |
---|---|---|---|---|
0 | H1 | 701 | 680.534943 | 604.140123 |
1 | H1 | 702 | 599.038307 | 523.364874 |
2 | H1 | 703 | 572.808421 | 479.174481 |
3 | H1 | 704 | 564.573783 | 444.540062 |
4 | H1 | 705 | 543.046026 | 419.987657 |
And evaluate them
def evaluate(df, group):
results = []
for model in df.columns.drop(['unique_id', 'ds']):
model_res = M4Evaluation.evaluate(
'data', group, df[model].to_numpy().reshape(-1, horizon)
)
model_res.index = [model]
results.append(model_res)
return pd.concat(results).T.round(2)
evaluate(preds, group)
lgb | ridge | |
---|---|---|
SMAPE | 18.78 | 20.00 |
MASE | 5.07 | 1.29 |
OWA | 1.57 | 0.81 |
Tuning model parameters
You can provide your own model with its search space to perform the optimization. The search space should be a function that takes an optuna trial and returns the model parameters.
def my_lgb_config(trial: optuna.Trial):
return {
'learning_rate': 0.05,
'verbosity': -1,
'num_leaves': trial.suggest_int('num_leaves', 2, 128, log=True),
'objective': trial.suggest_categorical('objective', ['l1', 'l2', 'mape']),
}
my_lgb = AutoModel(
model=lgb.LGBMRegressor(),
config=my_lgb_config,
)
auto_mlf = AutoMLForecast(
models={'my_lgb': my_lgb},
freq=1,
season_length=24,
).fit(
train,
n_windows=2,
h=horizon,
num_samples=2,
)
preds = auto_mlf.predict(horizon)
evaluate(preds, group)
my_lgb | |
---|---|
SMAPE | 18.67 |
MASE | 4.79 |
OWA | 1.51 |
Tuning scikit-learn pipelines
We internally use BaseEstimator.set_params for each configuration, so if you’re using a scikit-learn pipeline you can tune its parameters as you normally would with scikit-learn’s searches.
ridge_pipeline = make_pipeline(
ColumnTransformer(
[('encoder', OneHotEncoder(), ['unique_id'])],
remainder='passthrough',
),
Ridge()
)
my_auto_ridge = AutoModel(
ridge_pipeline,
# the space must have the name of the estimator followed by the parameter
# you could also tune the encoder here
lambda trial: {f'ridge__{k}': v for k, v in ridge_space(trial).items()},
)
auto_mlf = AutoMLForecast(
models={'ridge': my_auto_ridge},
freq=1,
season_length=24,
fit_config=lambda trial: {'static_features': ['unique_id']}
).fit(
train,
n_windows=2,
h=horizon,
num_samples=2,
)
preds = auto_mlf.predict(horizon)
evaluate(preds, group)
ridge | |
---|---|
SMAPE | 18.50 |
MASE | 1.24 |
OWA | 0.76 |
Tuning features
The
MLForecast
class defines the features to build in its constructor. You can tune the
features by providing a function through the init_config
argument,
which will take an optuna trial and produce a configuration to pass to
the
MLForecast
constructor.
def my_init_config(trial: optuna.Trial):
lag_transforms = [
ExponentiallyWeightedMean(alpha=0.3),
RollingMean(window_size=24 * 7, min_samples=1),
]
lag_to_transform = trial.suggest_categorical('lag_to_transform', [24, 48])
return {
'lags': [24 * i for i in range(1, 7)], # this won't be tuned
'lag_transforms': {lag_to_transform: lag_transforms},
}
auto_mlf = AutoMLForecast(
models=[AutoRidge()],
freq=1,
season_length=24,
init_config=my_init_config,
).fit(
train,
n_windows=2,
h=horizon,
num_samples=2,
)
preds = auto_mlf.predict(horizon)
evaluate(preds, group)
AutoRidge | |
---|---|
SMAPE | 13.31 |
MASE | 1.67 |
OWA | 0.71 |
Tuning fit parameters
The
MLForecast.fit
method takes some arguments that could improve the forecasting
performance of your models, such as dropna
and static_features
. If
you want to tune those you can provide a function to the fit_config
argument.
def my_fit_config(trial: optuna.Trial):
if trial.suggest_int('use_id', 0, 1):
static_features = ['unique_id']
else:
static_features = None
return {
'static_features': static_features
}
auto_mlf = AutoMLForecast(
models=[AutoLightGBM()],
freq=1,
season_length=24,
fit_config=my_fit_config,
).fit(
train,
n_windows=2,
h=horizon,
num_samples=2,
)
preds = auto_mlf.predict(horizon)
evaluate(preds, group)
AutoLightGBM | |
---|---|
SMAPE | 18.78 |
MASE | 5.07 |
OWA | 1.57 |
Accessing the optimization results
After the process has finished the results are available under the
results_
attribute of the
AutoMLForecast
object. There will be one result per model and the best configuration
can be found under the config
user attribute.
len(auto_mlf.results_)
1
auto_mlf.results_['AutoLightGBM'].best_trial.user_attrs['config']
{'model_params': {'bagging_freq': 1,
'learning_rate': 0.05,
'verbosity': -1,
'n_estimators': 169,
'lambda_l1': 0.027334069690310565,
'lambda_l2': 0.0026599310838681858,
'num_leaves': 112,
'feature_fraction': 0.7118273996694524,
'bagging_fraction': 0.8229470565333281,
'objective': 'l2'},
'mlf_init_params': {'lags': [48],
'target_transforms': None,
'lag_transforms': {1: [ExponentiallyWeightedMean(alpha=0.9)]},
'date_features': None,
'num_threads': 1},
'mlf_fit_params': {'static_features': None}}
Individual models
There is one optimization process per model. This is because different
models can make use of different features. So after the optimization
process is done for each model the best configuration is used to retrain
the model using all of the data. These final models are
MLForecast
objects and are saved in the models_
attribute.
auto_mlf.models_
{'AutoLightGBM': MLForecast(models=[AutoLightGBM], freq=1, lag_features=['lag48', 'exponentially_weighted_mean_lag1_alpha0.9'], date_features=[], num_threads=1)}
Saving
You can use the
AutoMLForecast.save
method to save the best models found. This produces one directory per
model.
with tempfile.TemporaryDirectory() as tmpdir:
auto_mlf.save(tmpdir)
print(os.listdir(tmpdir))
['AutoLightGBM']
Since each model is an
MLForecast
object you can load it by itself.
with tempfile.TemporaryDirectory() as tmpdir:
auto_mlf.save(tmpdir)
loaded = MLForecast.load(f'{tmpdir}/AutoLightGBM')
print(loaded)
MLForecast(models=[AutoLightGBM], freq=1, lag_features=['lag48', 'exponentially_weighted_mean_lag1_alpha0.9'], date_features=[], num_threads=1)