series = generate_daily_series(10, min_length=50, max_length=100)
diffs = Differences([1, 2, 5])
id_counts = counts_by_id(series, 'unique_id')
indptr = np.append(0, id_counts['counts'].cumsum())
ga = GroupedArray(series['y'].values, indptr)
# differences are applied correctly
transformed = diffs.fit_transform(ga)
assert diffs.fitted_ == []
expected = series.copy()
for d in diffs.differences:
expected['y'] -= expected.groupby('unique_id', observed=True)['y'].shift(d)
np.testing.assert_allclose(transformed.data, expected['y'].values)
# fitted differences are restored correctly
diffs.store_fitted = True
transformed = diffs.fit_transform(ga)
keep_mask = ~np.isnan(transformed.data)
restored = diffs.inverse_transform_fitted(transformed)
np.testing.assert_allclose(ga.data[keep_mask], restored.data[keep_mask])
# test transform
new_ga = GroupedArray(np.random.rand(10), np.arange(11))
prev_orig = [diffs.scalers_[i].tails_[::d].copy() for i, d in enumerate(diffs.differences)]
expected = new_ga.data - np.add.reduce(prev_orig)
updates = diffs.update(new_ga)
np.testing.assert_allclose(expected, updates.data)
np.testing.assert_allclose(diffs.scalers_[0].tails_, new_ga.data)
np.testing.assert_allclose(diffs.scalers_[1].tails_[1::2], new_ga.data - prev_orig[0])
np.testing.assert_allclose(diffs.scalers_[2].tails_[4::5], new_ga.data - np.add.reduce(prev_orig[:2]))
# variable sizes
diff1 = Differences([1])
ga = GroupedArray(np.arange(10), np.array([0, 3, 10]))
diff1.fit_transform(ga)
new_ga = GroupedArray(np.arange(4), np.array([0, 1, 4]))
updates = diff1.update(new_ga)
np.testing.assert_allclose(updates.data, np.array([0 - 2, 1 - 9, 2 - 1, 3 - 2]))
np.testing.assert_allclose(diff1.scalers_[0].tails_, np.array([0, 3]))
# short series
ga = GroupedArray(np.arange(20), np.array([0, 2, 20]))
test_fail(lambda: diffs.fit_transform(ga), contains="[0]")
# stack
diffs = Differences([1, 2, 5])
ga = GroupedArray(series['y'].values, indptr)
diffs.fit_transform(ga)
stacked = Differences.stack([diffs, diffs])
for i in range(len(diffs.differences)):
np.testing.assert_allclose(
stacked.scalers_[i].tails_,
np.tile(diffs.scalers_[i].tails_, 2)
)