Convert your dataframes to arrays to use less memory and train faster
MLForecast
all you have to do to train with numpy arrays is provide the as_numpy
argument, which will cast the features to an array before passing them
to the models.
unique_id | ds | lr | lgbm | |
---|---|---|---|---|
0 | id_0 | 2000-08-10 | 5.268787 | 6.322262 |
1 | id_1 | 2000-04-07 | 4.437316 | 5.213255 |
2 | id_2 | 2000-06-16 | 3.246518 | 4.373904 |
3 | id_3 | 2000-08-30 | 0.144860 | 1.285219 |
4 | id_4 | 2001-01-08 | 2.211318 | 3.236700 |
as_numpy=True
.
unique_id | ds | y | static_0 |
---|---|---|---|
cat | datetime[ns] | f64 | cat |
”id_0” | 2000-01-01 00:00:00 | 36.462689 | ”84" |
"id_0” | 2000-01-02 00:00:00 | 121.008199 | ”84” |
fcst.ts.features_order_
unique_id | ds | lgbm |
---|---|---|
cat | datetime[ns] | f64 |
”id_0” | 2000-08-10 00:00:00 | 448.796188 |
”id_1” | 2000-04-07 00:00:00 | 81.058211 |
”id_2” | 2000-06-16 00:00:00 | 4.450549 |
”id_3” | 2000-08-30 00:00:00 | 14.219603 |
”id_4” | 2001-01-08 00:00:00 | 87.361881 |