mlforecast.lag_transforms
Lag
__init__
stack
take
transform
update
RollingMean
__init__
window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
RollingStd
__init__
window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
RollingMin
__init__
window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
RollingMax
__init__
window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
RollingQuantile
__init__
stack
take
transform
update
SeasonalRollingMean
__init__
season_length
(int): Periodicity of the seasonal period.window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
SeasonalRollingStd
__init__
season_length
(int): Periodicity of the seasonal period.window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
SeasonalRollingMin
__init__
season_length
(int): Periodicity of the seasonal period.window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
SeasonalRollingMax
__init__
season_length
(int): Periodicity of the seasonal period.window_size
(int): Number of samples in the window.min_samples
(int, optional): Minimum samples required to output the statistic. If None
, will be set to window_size
. Defaults to None.stack
take
transform
update
SeasonalRollingQuantile
__init__
stack
take
transform
update
ExpandingMean
__init__
stack
take
transform
update
ExpandingStd
__init__
stack
take
transform
update
ExpandingMin
__init__
stack
take
transform
update
ExpandingMax
__init__
stack
take
transform
update
ExpandingQuantile
__init__
stack
take
transform
update
ExponentiallyWeightedMean
alpha
(float): Smoothing factor.__init__
stack
take
transform
update
Offset
tfm
(LagTransform): Transformation to be appliedn
(int): Number of positions to shift (lag) series before applying the transformation__init__
stack
take
transform
update
Combine
tfm1
(LagTransform): First transformation.tfm2
(LagTransform): Second transformation.operator
(callable): Binary operator that defines how to combine the two transformations.__init__
stack
take
transform
update