module mlforecast.lag_transforms
class Lag
method __init__
property update_samples
method stack
method take
method transform
method update
class RollingMean
method __init__
window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class RollingStd
method __init__
window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class RollingMin
method __init__
window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class RollingMax
method __init__
window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class RollingQuantile
method __init__
property update_samples
method stack
method take
method transform
method update
class SeasonalRollingMean
method __init__
season_length(int): Periodicity of the seasonal period.window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class SeasonalRollingStd
method __init__
season_length(int): Periodicity of the seasonal period.window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class SeasonalRollingMin
method __init__
season_length(int): Periodicity of the seasonal period.window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class SeasonalRollingMax
method __init__
season_length(int): Periodicity of the seasonal period.window_size(int): Number of samples in the window.min_samples(int, optional): Minimum samples required to output the statistic. IfNone, will be set towindow_size. Defaults to None.
property update_samples
method stack
method take
method transform
method update
class SeasonalRollingQuantile
method __init__
property update_samples
method stack
method take
method transform
method update
class ExpandingMean
method __init__
property update_samples
method stack
method take
method transform
method update
class ExpandingStd
method __init__
property update_samples
method stack
method take
method transform
method update
class ExpandingMin
method __init__
property update_samples
method stack
method take
method transform
method update
class ExpandingMax
method __init__
property update_samples
method stack
method take
method transform
method update
class ExpandingQuantile
method __init__
property update_samples
method stack
method take
method transform
method update
class ExponentiallyWeightedMean
Exponentially weighted average
Args:
alpha(float): Smoothing factor.
method __init__
property update_samples
method stack
method take
method transform
method update
class Offset
Shift series before computing transformation
Args:
tfm(LagTransform): Transformation to be appliedn(int): Number of positions to shift (lag) series before applying the transformation
method __init__
property update_samples
method stack
method take
method transform
method update
class Combine
Combine two lag transformations using an operator
Args:
tfm1(LagTransform): First transformation.tfm2(LagTransform): Second transformation.operator(callable): Binary operator that defines how to combine the two transformations.

