module mlforecast.feature_engineering
function transform_exog
df(pandas or polars DataFrame): Dataframe with ids, times and values for the exogenous regressors.lags(list of int, optional): Lags of the target to use as features. Defaults to None.lag_transforms(dict of int to list of functions, optional): Mapping of target lags to their transformations. Defaults to None.id_col(str): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.num_threads(int): Number of threads to use when computing the features. Defaults to 1.
(pandas or polars DataFrame): Original DataFrame with the computed features

