Access and interpret the models after fitting
unique_id | ds | y | |
---|---|---|---|
0 | id_0 | 2000-01-01 | 0.322947 |
1 | id_0 | 2000-01-02 | 1.218794 |
2 | id_0 | 2000-01-03 | 2.445887 |
3 | id_0 | 2000-01-04 | 3.481831 |
4 | id_0 | 2000-01-05 | 4.191721 |
MLForecast.fit
does is save the required data for the predict
step and also train the models (in this case the linear regression). The
trained models are available in the MLForecast.models_
attribute,
which is a dictionary where the keys are the model names and the values
are the model themselves.
MLForecast.preprocess
.
unique_id | ds | y | lag1 | dayofweek | |
---|---|---|---|---|---|
1 | id_0 | 2000-01-02 | 1.218794 | 0.322947 | 6 |
2 | id_0 | 2000-01-03 | 2.445887 | 1.218794 | 0 |
3 | id_0 | 2000-01-04 | 3.481831 | 2.445887 | 1 |
4 | id_0 | 2000-01-05 | 4.191721 | 3.481831 | 2 |
5 | id_0 | 2000-01-06 | 5.395863 | 4.191721 | 3 |
lag1 | dayofweek | |
---|---|---|
1 | 0.322947 | 6 |
2 | 1.218794 | 0 |
3 | 2.445887 | 1 |
4 | 3.481831 | 2 |
5 | 4.191721 | 3 |
unique_id | ds | lr | |
---|---|---|---|
0 | id_0 | 2000-08-10 | 3.468643 |
1 | id_1 | 2000-04-07 | 3.016877 |
2 | id_2 | 2000-06-16 | 2.815249 |
3 | id_3 | 2000-08-30 | 4.048894 |
4 | id_4 | 2001-01-08 | 3.524532 |
SaveFeatures.get_features
lag1 | dayofweek | |
---|---|---|
0 | 4.343744 | 3 |
1 | 3.150799 | 4 |
2 | 2.137412 | 4 |
3 | 6.182456 | 2 |
4 | 1.391698 | 0 |
'id_4'
.