RayLGBMForecast (boosting_type:str='gbdt', num_leaves:int=31,
max_depth:int=-1, learning_rate:float=0.1,
n_estimators:int=100, subsample_for_bin:int=200000, obje
ctive:Union[str,Callable[[Optional[numpy.ndarray],numpy.
ndarray],Tuple[numpy.ndarray,numpy.ndarray]],Callable[[O
ptional[numpy.ndarray],numpy.ndarray,Optional[numpy.ndar
ray]],Tuple[numpy.ndarray,numpy.ndarray]],Callable[[Opti
onal[numpy.ndarray],numpy.ndarray,Optional[numpy.ndarray
],Optional[numpy.ndarray]],Tuple[numpy.ndarray,numpy.nda
rray]],NoneType]=None,
class_weight:Union[Dict,str,NoneType]=None,
min_split_gain:float=0.0, min_child_weight:float=0.001,
min_child_samples:int=20, subsample:float=1.0,
subsample_freq:int=0, colsample_bytree:float=1.0,
reg_alpha:float=0.0, reg_lambda:float=0.0, random_state:
Union[int,numpy.random.mtrand.RandomState,numpy.random._
generator.Generator,NoneType]=None,
n_jobs:Optional[int]=None, importance_type:str='split',
**kwargs:Any)