Models
RayLGBMForecast
How-to guides
- Exogenous features
- Lag transformations
- Hyperparameter optimization
- Using scikit-learn pipelines
- Sample weights
- Cross validation
- Probabilistic forecasting
- Target transformations
- Analyzing the trained models
- MLflow
- Transforming exogenous features
- Custom training
- Training with numpy arrays
- One model per step
- Custom date features
- Predict callbacks
- Predicting a subset of ids
- Transfer Learning
API Reference
Models
RayLGBMForecast
ray LightGBM forecaster
Wrapper of lightgbm.ray.RayLGBMRegressor
that adds a model_
property
that contains the fitted booster and is sent to the workers to in the
forecasting step.
source
RayLGBMForecast
RayLGBMForecast (boosting_type:str='gbdt', num_leaves:int=31, max_depth:int=-1, learning_rate:float=0.1, n_estimators:int=100, subsample_for_bin:int=200000, obje ctive:Union[str,Callable[[Optional[numpy.ndarray],numpy. ndarray],Tuple[numpy.ndarray,numpy.ndarray]],Callable[[O ptional[numpy.ndarray],numpy.ndarray,Optional[numpy.ndar ray]],Tuple[numpy.ndarray,numpy.ndarray]],Callable[[Opti onal[numpy.ndarray],numpy.ndarray,Optional[numpy.ndarray ],Optional[numpy.ndarray]],Tuple[numpy.ndarray,numpy.nda rray]],NoneType]=None, class_weight:Union[Dict,str,NoneType]=None, min_split_gain:float=0.0, min_child_weight:float=0.001, min_child_samples:int=20, subsample:float=1.0, subsample_freq:int=0, colsample_bytree:float=1.0, reg_alpha:float=0.0, reg_lambda:float=0.0, random_state: Union[int,numpy.random.mtrand.RandomState,numpy.random._ generator.Generator,NoneType]=None, n_jobs:Optional[int]=None, importance_type:str='split', **kwargs:Any)
PublicAPI (beta): This API is in beta and may change before becoming stable.
On this page