Wrapper of lightgbm.ray.RayLGBMRegressor that adds a model_ property that contains the fitted booster and is sent to the workers to in the forecasting step.


source

RayLGBMForecast

 RayLGBMForecast (boosting_type:str='gbdt', num_leaves:int=31,
                  max_depth:int=-1, learning_rate:float=0.1,
                  n_estimators:int=100, subsample_for_bin:int=200000, obje
                  ctive:Union[str,Callable[[Optional[numpy.ndarray],numpy.
                  ndarray],Tuple[numpy.ndarray,numpy.ndarray]],Callable[[O
                  ptional[numpy.ndarray],numpy.ndarray,Optional[numpy.ndar
                  ray]],Tuple[numpy.ndarray,numpy.ndarray]],Callable[[Opti
                  onal[numpy.ndarray],numpy.ndarray,Optional[numpy.ndarray
                  ],Optional[numpy.ndarray]],Tuple[numpy.ndarray,numpy.nda
                  rray]],NoneType]=None,
                  class_weight:Union[Dict,str,NoneType]=None,
                  min_split_gain:float=0.0, min_child_weight:float=0.001,
                  min_child_samples:int=20, subsample:float=1.0,
                  subsample_freq:int=0, colsample_bytree:float=1.0,
                  reg_alpha:float=0.0, reg_lambda:float=0.0, random_state:
                  Union[int,numpy.random.mtrand.RandomState,numpy.random._
                  generator.Generator,NoneType]=None,
                  n_jobs:Optional[int]=None, importance_type:str='split',
                  **kwargs:Any)

PublicAPI (beta): This API is in beta and may change before becoming stable.