import pandas as pd
from nixtla import NixtlaClient
from utilsforecast.data import generate_series
nixtla_client = NixtlaClient(
    # defaults to os.environ.get("NIXTLA_API_KEY")
    api_key = 'my_api_key_provided_by_nixtla'
)

👍 Use an Azure AI endpoint

To use an Azure AI endpoint, remember to set also the base_url argument:

nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")

# Read data
# Dates for the weekends are missing
df = pd.read_csv(
    'https://datasets-nixtla.s3.amazonaws.com/pltr.csv',
    usecols=['date', 'Close'],
)

# Forecast
# the frequency is inferred as B, as only business days are represented in the dataset
forecast_df = nixtla_client.forecast(
    df=df,
    h=5,
    time_col='date', 
    target_col='Close',
)
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Inferred freq: B
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Restricting input...
INFO:nixtla.nixtla_client:Calling Forecast Endpoint...
# manually set the frequency
forecast_df2 = nixtla_client.forecast(
    df=df,
    freq='B',
    h=5,
    time_col='date', 
    target_col='Close',
)
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Restricting input...
INFO:nixtla.nixtla_client:Calling Forecast Endpoint...
pd.testing.assert_frame_equal(forecast_df, forecast_df2)

📘 Available models in Azure AI

If you are using an Azure AI endpoint, please be sure to set model="azureai":

nixtla_client.forecast(..., model="azureai")

For the public API, we support two models: timegpt-1 and timegpt-1-long-horizon.

By default, timegpt-1 is used. Please see this tutorial on how and when to use timegpt-1-long-horizon.