Fine-tuning
👍 Use an Azure AI endpoint
To use an Azure AI endpoint, remember to set also the
base_url
argument:
nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
📘 Available models in Azure AI
If you are using an Azure AI endpoint, please be sure to set
model="azureai"
:
nixtla_client.forecast(..., model="azureai")
For the public API, we support two models:
timegpt-1
andtimegpt-1-long-horizon
.By default,
timegpt-1
is used. Please see this tutorial on how and when to usetimegpt-1-long-horizon
.
By default, only a small amount of finetuning is applied
(finetune_depth=1
). We can increase the intensity of finetuning by
increasing the finetune_depth
parameter. Note that increasing
finetune_depth
and finetune_steps
increases wall time for generating
predictions.
For more information on fine-tuning, read our fine-tuning tutorial.