Finetuning with a custom loss function
When fine-tuning, we can specify a loss function to be used usin the
finetune_loss
argument.
The possible values are:
-
"mae"
-
"mse"
-
"rmse"
-
"mape"
-
"smape"
👍 Use an Azure AI endpoint
To use an Azure AI endpoint, remember to set also the
base_url
argument:
nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
📘 Available models in Azure AI
If you are using an Azure AI endpoint, please be sure to set
model="azureai"
:
nixtla_client.forecast(..., model="azureai")
For the public API, we support two models:
timegpt-1
andtimegpt-1-long-horizon
.By default,
timegpt-1
is used. Please see this tutorial on how and when to usetimegpt-1-long-horizon
.
For more details on specifying a loss function and how it impacts the performance of the model, read our in-depth tutorial on Fine-tuning with a specific loss function.