import pandas as pd
from nixtla import NixtlaClient
nixtla_client = NixtlaClient(
api_key = 'my_api_key_provided_by_nixtla'
)
👍 Use an Azure AI endpoint
To use an Azure AI endpoint, set the base_url
argument:
nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
1. Historical exogenous variables
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-with-ex-vars.csv')
forecast_df = nixtla_client.forecast(
df=df,
h=24,
id_col='unique_id',
target_col='y',
time_col='ds',
hist_exog_list=['Exogenous1', 'Exogenous2', 'day_0', 'day_1', 'day_2', 'day_3', 'day_4', 'day_5', 'day_6']
)
2. Future exogenous variables
import numpy as np
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-with-ex-vars.csv')
future_ex_vars_df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-future-ex-vars.csv')
forecast_df = nixtla_client.forecast(
df=df,
X_df=future_ex_vars_df,
h=24,
id_col='unique_id',
target_col='y',
time_col='ds'
)
3. Historical and future exogenous variables
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-with-ex-vars.csv')
future_ex_vars_df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-future-ex-vars.csv')
future_ex_vars_df = future_ex_vars_df[["unique_id", "ds", "Exogenous1", "Exogenous2"]]
forecast_df = nixtla_client.forecast(
df=df,
X_df=future_ex_vars_df,
h=24,
id_col='unique_id',
target_col='y',
time_col='ds',
hist_exog_list=['day_0', 'day_1', 'day_2', 'day_3', 'day_4', 'day_5', 'day_6']
)
📘 Available models in Azure AI
If you use an Azure AI endpoint, set model="azureai"
nixtla_client.detect_anomalies(..., model="azureai")
For the public API, two models are supported: timegpt-1
and
timegpt-1-long-horizon
.
By default, timegpt-1
is used. See this
tutorial
for details on using timegpt-1-long-horizon
.
For more details on using exogenous features with TimeGPT, read our
in-depth tutorials on Exogenous
variables
and on Categorical
variables.