We can generate prediction intervals using the level parameter in the forecast method. It takes any values between 0 and 100, including decimal numbers.

import pandas as pd
from nixtla import NixtlaClient
nixtla_client = NixtlaClient(
    # defaults to os.environ.get("NIXTLA_API_KEY")
    api_key = 'my_api_key_provided_by_nixtla'
)

👍 Use an Azure AI endpoint

To use an Azure AI endpoint, remember to set also the base_url argument:

nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")

# Read the data
df = pd.read_csv("https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv")

# Forecast using a 80% confidence interval
forecast_df = nixtla_client.forecast(
    df=df,
    h=12,
    time_col='timestamp',
    target_col="value",
    level=[80]
)

# Plot predictions with intervals
nixtla_client.plot(
    df=df, 
    forecasts_df=forecast_df, 
    time_col='timestamp', 
    target_col='value',
    level=[80]
)
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Inferred freq: MS
INFO:nixtla.nixtla_client:Restricting input...
INFO:nixtla.nixtla_client:Calling Forecast Endpoint...

📘 Available models in Azure AI

If you are using an Azure AI endpoint, please be sure to set model="azureai":

nixtla_client.forecast(..., model="azureai")

For the public API, we support two models: timegpt-1 and timegpt-1-long-horizon.

By default, timegpt-1 is used. Please see this tutorial on how and when to use timegpt-1-long-horizon.

For more details on uncertainty quantification, read our tutorials on using quantile forecasts and prediction intervals.

We can generate prediction intervals using the level parameter in the forecast method. It takes any values between 0 and 100, including decimal numbers.

import pandas as pd
from nixtla import NixtlaClient
nixtla_client = NixtlaClient(
    # defaults to os.environ.get("NIXTLA_API_KEY")
    api_key = 'my_api_key_provided_by_nixtla'
)

👍 Use an Azure AI endpoint

To use an Azure AI endpoint, remember to set also the base_url argument:

nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")

# Read the data
df = pd.read_csv("https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv")

# Forecast using a 80% confidence interval
forecast_df = nixtla_client.forecast(
    df=df,
    h=12,
    time_col='timestamp',
    target_col="value",
    level=[80]
)

# Plot predictions with intervals
nixtla_client.plot(
    df=df, 
    forecasts_df=forecast_df, 
    time_col='timestamp', 
    target_col='value',
    level=[80]
)
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Inferred freq: MS
INFO:nixtla.nixtla_client:Restricting input...
INFO:nixtla.nixtla_client:Calling Forecast Endpoint...

📘 Available models in Azure AI

If you are using an Azure AI endpoint, please be sure to set model="azureai":

nixtla_client.forecast(..., model="azureai")

For the public API, we support two models: timegpt-1 and timegpt-1-long-horizon.

By default, timegpt-1 is used. Please see this tutorial on how and when to use timegpt-1-long-horizon.

For more details on uncertainty quantification, read our tutorials on using quantile forecasts and prediction intervals.