Run TimeGPT distributedly on top of RayRay is an open source unified compute framework to scale Python workloads. In this guide, we will explain how to use
TimeGPT
on top of Ray.
Outline:
Note You can installIf executing on a distributedfugue
withpip
:
Ray
cluster, ensure that the nixtla
library is installed across all the workers.
pandas
DataFrame. In this tutorial, we
will use a dataset that contains hourly electricity prices from
different markets.
unique_id | ds | y | |
---|---|---|---|
0 | BE | 2016-10-22 00:00:00 | 70.00 |
1 | BE | 2016-10-22 01:00:00 | 37.10 |
2 | BE | 2016-10-22 02:00:00 | 37.10 |
3 | BE | 2016-10-22 03:00:00 | 44.75 |
4 | BE | 2016-10-22 04:00:00 | 37.10 |
Ray
and convert the pandas DataFrame to a Ray
DataFrame.
TimeGPT
on top of Ray
is almost identical to the
non-distributed case. The only difference is that you need to use a
Ray
DataFrame.
First, instantiate the NixtlaClient
class.
👍 Use an Azure AI endpoint To use an Azure AI endpoint, set thebase_url
argument:nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
NixtlaClient
class such as
forecast
or
cross_validation
.
📘 Available models in Azure AI If you are using an Azure AI endpoint, please be sure to setTo visualize the result, use themodel="azureai"
:nixtla_client.forecast(..., model="azureai")
For the public API, we support two models:timegpt-1
andtimegpt-1-long-horizon
. By default,timegpt-1
is used. Please see this tutorial on how and when to usetimegpt-1-long-horizon
.
to_pandas
method to convert the
output of Ray
to a pandas
DataFrame.
unique_id | ds | TimeGPT | |
---|---|---|---|
55 | NP | 2018-12-24 07:00:00 | 55.387066 |
56 | NP | 2018-12-24 08:00:00 | 56.115517 |
57 | NP | 2018-12-24 09:00:00 | 56.090714 |
58 | NP | 2018-12-24 10:00:00 | 55.813717 |
59 | NP | 2018-12-24 11:00:00 | 55.528519 |
unique_id | ds | cutoff | TimeGPT | |
---|---|---|---|---|
295 | NP | 2018-12-23 19:00:00 | 2018-12-23 11:00:00 | 53.632019 |
296 | NP | 2018-12-23 20:00:00 | 2018-12-23 11:00:00 | 52.512775 |
297 | NP | 2018-12-23 21:00:00 | 2018-12-23 11:00:00 | 51.894035 |
298 | NP | 2018-12-23 22:00:00 | 2018-12-23 11:00:00 | 51.06572 |
299 | NP | 2018-12-23 23:00:00 | 2018-12-23 11:00:00 | 50.32592 |
TimeGPT
on top of Ray
. To
do this, please refer to the Exogenous
Variables
tutorial. Just keep in mind that instead of using a pandas DataFrame,
you need to use a Ray
DataFrame instead.
Ray
session.