module neuralforecast.models.kan
class KANLinear
KANLinear
method __init__
property scaled_spline_weight
method b_splines
x(torch.Tensor): Input tensor of shape (batch_size, in_features).
torch.Tensor: B-spline bases tensor of shape (batch_size, in_features, grid_size + spline_order).
method curve2coeff
x(torch.Tensor): Input tensor of shape (batch_size, in_features).y(torch.Tensor): Output tensor of shape (batch_size, in_features, out_features).
torch.Tensor: Coefficients tensor of shape (out_features, in_features, grid_size + spline_order).
method forward
method regularization_loss
method reset_parameters
method update_grid
class KAN
KAN
Simple Kolmogorov-Arnold Network (KAN). This network uses the Kolmogorov-Arnold approximation theorem, where splines are learned to approximate more complex functions. Unlike the MLP, the non-linear function are learned at the edges, and the nodes simply sum the different learned functions.
Args:
h(int): forecast horizon.input_size(int): considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].grid_size(int): number of intervals used by the splines to approximate the function.spline_order(int): order of the B-splines.scale_noise(float): regularization coefficient for the splines.scale_base(float): scaling coefficient for the base function.scale_spline(float): scaling coefficient for the splines.enable_standalone_scale_spline(bool): whether each spline is scaled individually.grid_eps(float): used for numerical stability.grid_range(list): range of the grid used for spline approximation.n_hidden_layers(int): number of hidden layers for the KAN.hidden_size(int or list): number of units for each hidden layer of the KAN. If an integer, all hidden layers will have the same size. Use a list to specify the size of each hidden layer.stat_exog_list(str list): static exogenous columns.hist_exog_list(str list): historic exogenous columns.futr_exog_list(str list): future exogenous columns.exclude_insample_y(bool): the model skips the autoregressive features y[t-input_size:t] if True.loss(PyTorch module): instantiated train loss class from losses collection.valid_loss(PyTorch module): instantiated valid loss class from losses collection.max_steps(int): maximum number of training steps.learning_rate(float): Learning rate between (0, 1).num_lr_decays(int): Number of learning rate decays, evenly distributed across max_steps.early_stop_patience_steps(int): Number of validation iterations before early stopping.val_check_steps(int): Number of training steps between every validation loss check.batch_size(int): number of different series in each batch.valid_batch_size(int): number of different series in each validation and test batch, if None uses batch_size.windows_batch_size(int): number of windows to sample in each training batch, default uses all.inference_windows_batch_size(int): number of windows to sample in each inference batch, -1 uses all.start_padding_enabled(bool): if True, the model will pad the time series with zeros at the beginning, by input size.training_data_availability_threshold(Union[float, List[float]]): minimum fraction of valid data points required for training windows. Single float applies to both insample and outsample; list of two floats specifies [insample_fraction, outsample_fraction]. Default 0.0 allows windows with only 1 valid data point (current behavior).step_size(int): step size between each window of temporal data.scaler_type(str): type of scaler for temporal inputs normalization see temporal scalers.random_seed(int): random_seed for pytorch initializer and numpy generators.drop_last_loader(bool): if TrueTimeSeriesDataLoaderdrops last non-full batch.alias(str): optional, Custom name of the model.optimizer(Subclass of ‘torch.optim.Optimizer’): optional, user specified optimizer instead of the default choice (Adam).optimizer_kwargs(dict): optional, list of parameters used by the user specifiedoptimizer.dataloader_kwargs(dict): optional, list of parameters passed into the PyTorch Lightning dataloader by theTimeSeriesDataLoader.**trainer_kwargs (int): keyword trainer arguments inherited from PyTorch Lighning’s trainer.
method __init__
property automatic_optimization
If set toFalse you are responsible for calling .backward(), .step(), .zero_grad().
property current_epoch
The current epoch in theTrainer, or 0 if not attached.
property device
property device_mesh
Strategies likeModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.
property dtype
property example_input_array
The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
- Single tensor: It is assumed the model takes a single argument, i.e.,
model.forward(model.example_input_array) - Tuple: The input array should be interpreted as a sequence of positional arguments, i.e.,
model.forward(*model.example_input_array) - Dict: The input array represents named keyword arguments, i.e.,
model.forward(**model.example_input_array)
property fabric
property global_rank
The index of the current process across all nodes and devices.property global_step
Total training batches seen across all epochs. If no Trainer is attached, this property is 0.property hparams
The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial.
Returns:
Mutable hyperparameters dictionary
property hparams_initial
The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams.
Returns:
AttributeDict: immutable initial hyperparameters
property local_rank
The index of the current process within a single node.property logger
Reference to the logger object in the Trainer.property loggers
Reference to the list of loggers in the Trainer.property on_gpu
ReturnsTrue if this model is currently located on a GPU.
Useful to set flags around the LightningModule for different CPU vs GPU behavior.
property strict_loading
Determines how Lightning loads this model using.load_state_dict(..., strict=model.strict_loading).

