module neuralforecast.models.hint
function get_bottomup_P
S(np.ndarray): Summing matrix of size (base,bottom).
np.ndarray: Reconciliation matrix of size (bottom,base).
function get_mintrace_ols_P
S(np.ndarray): Summing matrix of size (base,bottom).
np.ndarray: Reconciliation matrix of size (bottom,base).
function get_mintrace_wls_P
S(np.ndarray): Summing matrix of size (base,bottom).
np.ndarray: Reconciliation matrix of size (bottom,base).
function get_identity_P
class HINT
HINT
The Hierarchical Mixture Networks (HINT) are a highly modular framework that combines SoTA neural forecast architectures with a task-specialized mixture probability and advanced hierarchical reconciliation strategies. This powerful combination allows HINT to produce accurate and coherent probabilistic forecasts.
HINT’s incorporates a TemporalNorm module into any neural forecast architecture, the module normalizes inputs into the network’s non-linearities operating range and recomposes its output’s scales through a global skip connection, improving accuracy and training robustness. HINT ensures the forecast coherence via bootstrap sample reconciliation that restores the aggregation constraints into its base samples.
Available reconciliations:
- BottomUp
- MinTraceOLS
- MinTraceWLS
- Identity
h(int): Forecast horizon.model(NeuralForecast model): Instantiated model class from architecture collection.S(np.ndarray): Dumming matrix of size (base,bottom) see HierarchicalForecast’s aggregate method.reconciliation(str): HINT’s reconciliation method from [‘BottomUp’, ‘MinTraceOLS’, ‘MinTraceWLS’].alias(str, optional): Custom name of the model.
method __init__
method fit
TemporalNorm into the neural forecast architecture for a scale-decoupled optimization that robustifies cross-learning the hierachy’s series scales.
Args:
dataset(TimeSeriesDataset): NeuralForecast’sTimeSeriesDatasetsee details hereval_size(int): size of the validation set, (default 0).test_size(int): size of the test set, (default 0).random_seed(int): random seed for the prediction.
self: A fitted baseNeuralForecastmodel.
method get_test_size
method predict
dataset(TimeSeriesDataset): NeuralForecast’sTimeSeriesDatasetsee details herestep_size(int): steps between sequential predictions, (default 1).random_seed(int): random seed for the prediction.**data_kwarg: additional parameters for the dataset module.
y_hat: numpy predictions of theNeuralForecastmodel.
method save
path(str): path to save the model.

