Skip to main content

module neuralforecast.auto


class AutoRNN

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9732350>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)
Auto RNN Parameters:

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoLSTM

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9732890>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoGRU

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9732e60>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoTCN

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9733430>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoDeepAR

method __init__

__init__(
    h,
    loss=DistributionLoss(),
    valid_loss=MQLoss(),
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9733fa0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoDilatedRNN

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d97302e0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoBiTCN

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9826d40>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoxLSTM

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9827f40>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoMLP

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d98273a0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoNBEATS

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9826b60>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoNBEATSx

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9826680>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoNHITS

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9851150>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoDLinear

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9851720>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoNLinear

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9851c60>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoTiDE

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9852650>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoDeepNPTS

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9852d40>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoKAN

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9853df0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoTFT

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9853a90>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoVanillaTransformer

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9853490>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoInformer

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9850c10>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoAutoformer

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d9850610>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoFEDformer

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967f9d0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoPatchTST

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967fe80>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoiTransformer

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967f370>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoTimeXer

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967ee00>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoTimesNet

method __init__

__init__(
    h,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967e890>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoStemGNN

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967e350>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoHINT

method __init__

__init__(
    cls_model,
    h,
    loss,
    valid_loss,
    S,
    config,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967dd80>,
    num_samples=10,
    cpus=4,
    gpus=0,
    refit_with_val=False,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series=None)

class AutoTSMixer

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967dcf0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoTSMixerx

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967d6f0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoMLPMultivariate

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967d030>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoSOFTS

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967cac0>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoTimeMixer

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d967c550>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)

class AutoRMoK

method __init__

__init__(
    h,
    n_series,
    loss=MAE(),
    valid_loss=None,
    config=None,
    search_alg=<ray.tune.search.basic_variant.BasicVariantGenerator object at 0x7f60d968c100>,
    num_samples=10,
    refit_with_val=False,
    cpus=4,
    gpus=0,
    verbose=False,
    alias=None,
    backend='ray',
    callbacks=None
)

property automatic_optimization

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

property current_epoch

The current epoch in the Trainer, or 0 if not attached.

property device


property device_mesh

Strategies like ModelParallelStrategy will create a device mesh that can be accessed in the :meth:~pytorch_lightning.core.hooks.ModelHooks.configure_model hook to parallelize the LightningModule.

property dtype


property example_input_array

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:
  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)

property fabric


property global_rank

The index of the current process across all nodes and devices.

property global_step

Total training batches seen across all epochs. If no Trainer is attached, this property is 0.

property hparams

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial. Returns: Mutable hyperparameters dictionary

property hparams_initial

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams. Returns:
  • AttributeDict: immutable initial hyperparameters

property local_rank

The index of the current process within a single node.

property logger

Reference to the logger object in the Trainer.

property loggers

Reference to the list of loggers in the Trainer.

property on_gpu

Returns True if this model is currently located on a GPU. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

property strict_loading

Determines how Lightning loads this model using .load_state_dict(..., strict=model.strict_loading).

property trainer


classmethod get_default_config

get_default_config(h, backend, n_series)