Probabilistic Forecast Evaluation
Hierarchical Forecast’s reconciliation and evaluation.
This notebook offers a step to step guide to create a hierarchical forecasting pipeline.
In the pipeline we will use HierarchicalForecast
and StatsForecast
core class, to create base predictions, reconcile and evaluate them.
We will use the TourismL dataset that summarizes large Australian national visitor survey.
Outline 1. Installing Packages 2. Prepare TourismL dataset - Read and aggregate - StatsForecast’s Base Predictions 3. Reconciliar 4. Evaluar
1. Installing HierarchicalForecast
We assume you have StatsForecast and HierarchicalForecast already installed, if not check this guide for instructions on how to install HierarchicalForecast.
2. Preparing TourismL Dataset
2.1 Read Hierarchical Dataset
ds | y | |
---|---|---|
unique_id | ||
total | 1998-03-31 | 84503 |
total | 1998-06-30 | 65312 |
total | 1998-09-30 | 72753 |
total | 1998-12-31 | 70880 |
total | 1999-03-31 | 86893 |
… | … | … |
nt-oth-noncity | 2003-12-31 | 132 |
nt-oth-noncity | 2004-03-31 | 12 |
nt-oth-noncity | 2004-06-30 | 40 |
nt-oth-noncity | 2004-09-30 | 186 |
nt-oth-noncity | 2004-12-31 | 144 |
2.2 StatsForecast’s Base Predictions
This cell computes the base predictions Y_hat_df
for all the series in
Y_df
using StatsForecast’s AutoARIMA
. Additionally we obtain
insample predictions Y_fitted_df
for the methods that require them.
ds | AutoARIMA | AutoARIMA-lo-98 | AutoARIMA-lo-96 | AutoARIMA-lo-94 | AutoARIMA-lo-92 | AutoARIMA-lo-90 | AutoARIMA-lo-88 | AutoARIMA-lo-86 | AutoARIMA-lo-84 | … | AutoARIMA-hi-80 | AutoARIMA-hi-82 | AutoARIMA-hi-84 | AutoARIMA-hi-86 | AutoARIMA-hi-88 | AutoARIMA-hi-90 | AutoARIMA-hi-92 | AutoARIMA-hi-94 | AutoARIMA-hi-96 | AutoARIMA-hi-98 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unique_id | |||||||||||||||||||||
bus | 2005-01-31 | 9673.424805 | 7436.356445 | 7698.493652 | 7864.811523 | 7989.925781 | 8091.696289 | 8178.319336 | 8254.270508 | 8322.276367 | … | 10905.793945 | 10962.725586 | 11024.573242 | 11092.579102 | 11168.530273 | 11255.153320 | 11356.923828 | 11482.038086 | 11648.356445 | 11910.493164 |
bus | 2005-02-28 | 10393.900391 | 8156.831543 | 8418.968750 | 8585.287109 | 8710.401367 | 8812.171875 | 8898.794922 | 8974.746094 | 9042.751953 | … | 11626.269531 | 11683.200195 | 11745.048828 | 11813.054688 | 11889.005859 | 11975.628906 | 12077.399414 | 12202.513672 | 12368.832031 | 12630.968750 |
bus | 2005-03-31 | 12028.134766 | 9791.066406 | 10053.204102 | 10219.521484 | 10344.635742 | 10446.406250 | 10533.029297 | 10608.981445 | 10676.986328 | … | 13260.503906 | 13317.435547 | 13379.283203 | 13447.289062 | 13523.240234 | 13609.863281 | 13711.633789 | 13836.748047 | 14003.066406 | 14265.203125 |
bus | 2005-04-30 | 10995.679688 | 8758.610352 | 9020.748047 | 9187.065430 | 9312.179688 | 9413.951172 | 9500.574219 | 9576.525391 | 9644.531250 | … | 12228.047852 | 12284.979492 | 12346.828125 | 12414.833008 | 12490.785156 | 12577.407227 | 12679.178711 | 12804.292969 | 12970.610352 | 13232.748047 |
bus | 2005-05-31 | 9673.424805 | 7262.085449 | 7544.643555 | 7723.917480 | 7858.778320 | 7968.477539 | 8061.848633 | 8143.716797 | 8217.019531 | … | 11001.796875 | 11063.164062 | 11129.830078 | 11203.132812 | 11285.000977 | 11378.372070 | 11488.071289 | 11622.932617 | 11802.206055 | 12084.764648 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
wa-vfr-noncity | 2005-04-30 | 904.125549 | 463.371521 | 515.018616 | 547.787048 | 572.437439 | 592.488647 | 609.555359 | 624.519531 | 637.918213 | … | 1146.930542 | 1158.147339 | 1170.332886 | 1183.731567 | 1198.695679 | 1215.762451 | 1235.813721 | 1260.464111 | 1293.232544 | 1344.879517 |
wa-vfr-noncity | 2005-05-31 | 904.125549 | 457.607361 | 509.929901 | 543.126831 | 568.099670 | 588.413086 | 605.703003 | 620.862854 | 634.436707 | … | 1150.105957 | 1161.469482 | 1173.814331 | 1187.388184 | 1202.548096 | 1219.838013 | 1240.151489 | 1265.124268 | 1298.321167 | 1350.643677 |
wa-vfr-noncity | 2005-06-30 | 904.125549 | 451.916687 | 504.906036 | 538.526062 | 563.817139 | 584.389465 | 601.899719 | 617.252808 | 630.999634 | … | 1153.240967 | 1164.749268 | 1177.251465 | 1190.998291 | 1206.351440 | 1223.861694 | 1244.433960 | 1269.724976 | 1303.345093 | 1356.334473 |
wa-vfr-noncity | 2005-07-31 | 904.125549 | 446.296722 | 499.944611 | 533.982483 | 559.587830 | 580.415833 | 598.143738 | 613.687622 | 627.605286 | … | 1156.336914 | 1167.988159 | 1180.645752 | 1194.563477 | 1210.107422 | 1227.835327 | 1248.663208 | 1274.268677 | 1308.306519 | 1361.954346 |
wa-vfr-noncity | 2005-08-31 | 904.125549 | 440.744904 | 495.043365 | 529.493958 | 555.409851 | 576.490417 | 594.433289 | 610.165649 | 624.252136 | … | 1159.395264 | 1171.187866 | 1183.999023 | 1198.085449 | 1213.817871 | 1231.760742 | 1252.841309 | 1278.757080 | 1313.207764 | 1367.506226 |
ds | y | AutoARIMA | AutoARIMA-lo-98 | AutoARIMA-lo-96 | AutoARIMA-lo-94 | AutoARIMA-lo-92 | AutoARIMA-lo-90 | AutoARIMA-lo-88 | AutoARIMA-lo-86 | … | AutoARIMA-hi-80 | AutoARIMA-hi-82 | AutoARIMA-hi-84 | AutoARIMA-hi-86 | AutoARIMA-hi-88 | AutoARIMA-hi-90 | AutoARIMA-hi-92 | AutoARIMA-hi-94 | AutoARIMA-hi-96 | AutoARIMA-hi-98 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unique_id | |||||||||||||||||||||
bus | 1998-03-31 | 9815.0 | 9805.184570 | 7568.648926 | 7830.724121 | 7997.001953 | 8122.086426 | 8223.833008 | 8310.435547 | 8386.369141 | … | 11037.260742 | 11094.178711 | 11156.011719 | 11224.000977 | 11299.934570 | 11386.537109 | 11488.283203 | 11613.368164 | 11779.646484 | 12041.720703 |
bus | 1998-06-30 | 11823.0 | 11811.176758 | 9574.640625 | 9836.715820 | 10002.994141 | 10128.078125 | 10229.825195 | 10316.427734 | 10392.361328 | … | 13043.252930 | 13100.169922 | 13162.003906 | 13229.993164 | 13305.926758 | 13392.528320 | 13494.275391 | 13619.360352 | 13785.637695 | 14047.712891 |
bus | 1998-09-30 | 13565.0 | 13551.434570 | 11314.899414 | 11576.973633 | 11743.251953 | 11868.336914 | 11970.083008 | 12056.685547 | 12132.619141 | … | 14783.510742 | 14840.428711 | 14902.261719 | 14970.250977 | 15046.184570 | 15132.787109 | 15234.533203 | 15359.618164 | 15525.896484 | 15787.970703 |
bus | 1998-12-31 | 11478.0 | 11466.522461 | 9229.986328 | 9492.060547 | 9658.338867 | 9783.423828 | 9885.169922 | 9971.772461 | 10047.706055 | … | 12698.597656 | 12755.515625 | 12817.348633 | 12885.337891 | 12961.271484 | 13047.874023 | 13149.620117 | 13274.705078 | 13440.983398 | 13703.057617 |
bus | 1999-03-31 | 10027.0 | 9845.011719 | 7608.475586 | 7870.550781 | 8036.828613 | 8161.913086 | 8263.660156 | 8350.262695 | 8426.195312 | … | 11077.086914 | 11134.004883 | 11195.838867 | 11263.828125 | 11339.760742 | 11426.363281 | 11528.110352 | 11653.194336 | 11819.472656 | 12081.547852 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
wa-vfr-noncity | 2003-12-31 | 1177.0 | 927.351196 | 504.362732 | 553.928040 | 585.375671 | 609.032471 | 628.275513 | 644.654297 | 659.015320 | … | 1160.369507 | 1171.134155 | 1182.828491 | 1195.687012 | 1210.048096 | 1226.426880 | 1245.669922 | 1269.326660 | 1300.774292 | 1350.339600 |
wa-vfr-noncity | 2004-03-31 | 956.0 | 969.565552 | 546.577087 | 596.142456 | 627.590027 | 651.246887 | 670.489868 | 686.868652 | 701.229675 | … | 1202.583862 | 1213.348511 | 1225.042847 | 1237.901489 | 1252.262451 | 1268.641235 | 1287.884277 | 1311.541016 | 1342.988647 | 1392.554077 |
wa-vfr-noncity | 2004-06-30 | 772.0 | 967.268921 | 544.280457 | 593.845764 | 625.293396 | 648.950195 | 668.193237 | 684.572021 | 698.933044 | … | 1200.287109 | 1211.051880 | 1222.746216 | 1235.604736 | 1249.965820 | 1266.344604 | 1285.587646 | 1309.244385 | 1340.692017 | 1390.257324 |
wa-vfr-noncity | 2004-09-30 | 885.0 | 934.251831 | 511.263336 | 560.828674 | 592.276306 | 615.933105 | 635.176086 | 651.554932 | 665.915955 | … | 1167.270020 | 1178.034790 | 1189.729126 | 1202.587646 | 1216.948730 | 1233.327515 | 1252.570557 | 1276.227295 | 1307.674927 | 1357.240234 |
wa-vfr-noncity | 2004-12-31 | 797.0 | 925.923462 | 502.934998 | 552.500305 | 583.947937 | 607.604736 | 626.847778 | 643.226562 | 657.587585 | … | 1158.941772 | 1169.706421 | 1181.400757 | 1194.259277 | 1208.620361 | 1224.999146 | 1244.242188 | 1267.898926 | 1299.346558 | 1348.911865 |
3. Reconciliate Predictions
AutoARIMA/TopDown_method-average_proportions-lo-98 | AutoARIMA/TopDown_method-average_proportions-lo-96 | AutoARIMA/TopDown_method-average_proportions-lo-94 | AutoARIMA/TopDown_method-average_proportions-lo-92 | AutoARIMA/TopDown_method-average_proportions-lo-90 | AutoARIMA/TopDown_method-average_proportions-lo-88 | AutoARIMA/TopDown_method-average_proportions-lo-86 | AutoARIMA/TopDown_method-average_proportions-lo-84 | AutoARIMA/TopDown_method-average_proportions-lo-82 | AutoARIMA/TopDown_method-average_proportions-lo-80 | … | AutoARIMA/TopDown_method-average_proportions-hi-80 | AutoARIMA/TopDown_method-average_proportions-hi-82 | AutoARIMA/TopDown_method-average_proportions-hi-84 | AutoARIMA/TopDown_method-average_proportions-hi-86 | AutoARIMA/TopDown_method-average_proportions-hi-88 | AutoARIMA/TopDown_method-average_proportions-hi-90 | AutoARIMA/TopDown_method-average_proportions-hi-92 | AutoARIMA/TopDown_method-average_proportions-hi-94 | AutoARIMA/TopDown_method-average_proportions-hi-96 | AutoARIMA/TopDown_method-average_proportions-hi-98 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 80750.389920 | 80750.389920 | 80750.389920 | 82299.061781 | 82299.061781 | 82299.061781 | 82600.022716 | 82600.022716 | 82600.022716 | 82763.007090 | … | 88248.624229 | 88248.624229 | 88248.624229 | 88248.624229 | 88384.153447 | 90507.444522 | 90507.444522 | 90507.444522 | 90507.444522 | 90507.444522 |
1 | 61825.843210 | 61825.843210 | 61825.843210 | 61825.843210 | 61825.843210 | 61825.843210 | 63374.515072 | 63374.515072 | 63374.515072 | 63374.515072 | … | 68196.499405 | 68196.499405 | 68286.705654 | 69324.077520 | 69324.077520 | 69437.018534 | 71582.897812 | 71582.897812 | 71582.897812 | 71582.897812 |
2 | 68249.624404 | 68249.624404 | 68249.624404 | 68249.624404 | 69798.296266 | 69798.296266 | 69798.296266 | 69798.296266 | 69798.296266 | 69798.296266 | … | 74620.280598 | 74620.280598 | 74620.280598 | 74699.211067 | 75747.858714 | 75747.858714 | 75747.858714 | 75815.623322 | 78006.679006 | 78006.679006 |
3 | 67456.030661 | 67456.030661 | 67456.030661 | 67456.030661 | 69004.702523 | 69004.702523 | 69004.702523 | 69004.702523 | 69004.702523 | 69305.663457 | … | 73939.444667 | 74954.264971 | 74954.264971 | 74954.264971 | 74954.264971 | 74954.264971 | 75044.617782 | 77213.085263 | 77213.085263 | 77213.085263 |
4 | 80371.819611 | 80371.819611 | 80371.819611 | 80371.819611 | 80371.819611 | 81827.571161 | 81920.491472 | 81920.491472 | 81920.491472 | 81920.491472 | … | 87870.053920 | 87870.053920 | 87870.053920 | 87870.053920 | 88005.583138 | 90128.874213 | 90128.874213 | 90128.874213 | 90128.874213 | 90128.874213 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
7115 | 132.959504 | 132.959504 | 132.959504 | 132.959504 | 132.959504 | 135.828870 | 136.012021 | 136.012021 | 136.012021 | 136.545910 | … | 147.738932 | 147.738932 | 147.738932 | 152.191189 | 152.191189 | 152.191189 | 152.191189 | 152.191189 | 152.191189 | 152.191189 |
7116 | 158.417227 | 158.417227 | 158.417227 | 158.417227 | 158.417227 | 161.469743 | 161.469743 | 161.469743 | 161.469743 | 162.062953 | … | 170.974136 | 171.174163 | 173.196654 | 173.196654 | 173.196654 | 173.419267 | 177.648912 | 177.648912 | 177.648912 | 177.648912 |
7117 | 122.066765 | 122.066765 | 125.119281 | 125.119281 | 125.119281 | 125.119281 | 125.712492 | 125.712492 | 125.712492 | 125.712492 | … | 134.623675 | 134.623675 | 134.801476 | 136.846192 | 136.846192 | 136.846192 | 137.024283 | 141.298450 | 141.298450 | 141.298450 |
7118 | 134.467576 | 134.467576 | 134.467576 | 134.467576 | 137.520093 | 137.520093 | 137.520093 | 137.520093 | 138.113303 | 138.113303 | … | 145.762241 | 145.875843 | 147.202288 | 149.247004 | 149.247004 | 149.247004 | 149.425094 | 153.699262 | 153.699262 | 153.699262 |
7119 | 135.996894 | 136.027420 | 136.027420 | 136.027420 | 136.027420 | 136.027420 | 136.027420 | 136.573173 | 136.620630 | 136.620630 | … | 145.531813 | 145.531813 | 145.709614 | 147.754331 | 147.754331 | 147.754331 | 147.932421 | 152.206588 | 152.206588 | 152.206588 |
4. Evaluation
Dataset | Level | AutoARIMA/BottomUp | AutoARIMA/TopDown_method-average_proportions | AutoARIMA/TopDown_method-proportion_averages | AutoARIMA/MinTrace_method-ols | AutoARIMA/MinTrace_method-wls_var | AutoARIMA/MinTrace_method-mint_shrink | AutoARIMA/ERM_method-closed_lambda_reg-0.01 | |
---|---|---|---|---|---|---|---|---|---|
0 | TourismSmall | Overall | 0.0895±0.0012 | 0.1195±0.0008 | 0.1197±0.0008 | 0.0927±0.0010 | 0.0890±0.0010 | 0.0898±0.0009 | 0.1116±0.0015 |
1 | TourismSmall | Country | 0.0481±0.0016 | 0.0479±0.0011 | 0.0479±0.0011 | 0.0504±0.0010 | 0.0510±0.0011 | 0.0512±0.0011 | 0.0525±0.0015 |
2 | TourismSmall | Country/Purpose | 0.0699±0.0016 | 0.0928±0.0009 | 0.0931±0.0009 | 0.0804±0.0012 | 0.0724±0.0012 | 0.0741±0.0012 | 0.0927±0.0015 |
3 | TourismSmall | Country/Purpose/State | 0.1085±0.0011 | 0.1575±0.0009 | 0.1579±0.0009 | 0.1082±0.0011 | 0.1043±0.0009 | 0.1049±0.0008 | 0.1325±0.0018 |
4 | TourismSmall | Country/Purpose/State/CityNonCity | 0.1316±0.0012 | 0.1799±0.0008 | 0.1800±0.0008 | 0.1319±0.0013 | 0.1282±0.0011 | 0.1290±0.0010 | 0.1685±0.0029 |
Dataset | Level | AutoARIMA/BottomUp | AutoARIMA/TopDown_method-average_proportions | AutoARIMA/TopDown_method-proportion_averages | AutoARIMA/MinTrace_method-ols | AutoARIMA/MinTrace_method-wls_var | AutoARIMA/MinTrace_method-mint_shrink | AutoARIMA/ERM_method-closed_lambda_reg-0.01 | |
---|---|---|---|---|---|---|---|---|---|
0 | TourismSmall | Overall | 0.2530 | 0.3628 | 0.3649 | 0.3039 | 0.2789 | 0.2822 | 0.3942 |
1 | TourismSmall | Country | 0.2564 | 0.3180 | 0.3180 | 0.3522 | 0.3381 | 0.3394 | 0.4117 |
2 | TourismSmall | Country/Purpose | 0.2018 | 0.3178 | 0.3203 | 0.2557 | 0.2122 | 0.2175 | 0.3346 |
3 | TourismSmall | Country/Purpose/State | 0.3231 | 0.5077 | 0.5114 | 0.2943 | 0.2858 | 0.2890 | 0.4534 |
4 | TourismSmall | Country/Purpose/State/CityNonCity | 0.3423 | 0.5047 | 0.5099 | 0.3238 | 0.3083 | 0.3115 | 0.4791 |
Dataset | Level | AutoARIMA/BottomUp | AutoARIMA/TopDown_method-average_proportions | AutoARIMA/TopDown_method-proportion_averages | AutoARIMA/MinTrace_method-ols | AutoARIMA/MinTrace_method-wls_var | AutoARIMA/MinTrace_method-mint_shrink | AutoARIMA/ERM_method-closed_lambda_reg-0.01 | |
---|---|---|---|---|---|---|---|---|---|
0 | TourismSmall | Overall | 6.874103e+07 | 7.917294e+07 | 7.962361e+07 | 6.930268e+07 | 6.914837e+07 | 6.955018e+07 | 8.235776e+07 |
1 | TourismSmall | Country | 3.292999e+07 | 2.757131e+07 | 2.757129e+07 | 3.081254e+07 | 3.392861e+07 | 3.353851e+07 | 3.350023e+07 |
2 | TourismSmall | Country/Purpose | 1.894485e+07 | 2.661024e+07 | 2.683828e+07 | 2.218952e+07 | 1.932895e+07 | 1.984161e+07 | 2.681792e+07 |
3 | TourismSmall | Country/Purpose/State | 9.393103e+06 | 1.408613e+07 | 1.419471e+07 | 9.016056e+06 | 8.778983e+06 | 8.928542e+06 | 1.211747e+07 |
4 | TourismSmall | Country/Purpose/State/CityNonCity | 7.473085e+06 | 1.090527e+07 | 1.101934e+07 | 7.284562e+06 | 7.111832e+06 | 7.241519e+06 | 9.922145e+06 |
References
- Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus, Tim Januschowski. (2021). “End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series”. Proceedings of the 38th International Conference on Machine Learning (ICML).
- Kin G. Olivares, O. Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei Cao, Lee Dicker (2022). “Probabilistic Hierarchical Forecasting with Deep Poisson Mixtures”. Submitted to the International Journal Forecasting, Working paper available at arxiv.