Hierarchical Forecast’s reconciliation and evaluation.
HierarchicalForecast
and StatsForecast
core class, to create base predictions, reconcile and evaluate them.
We will use the TourismL dataset that summarizes large Australian
national visitor survey.
Outline 1. Installing Packages 2. Prepare TourismL dataset - Read and
aggregate - StatsForecast’s Base Predictions 3. Reconciliar 4. Evaluar
unique_id | ds | y | |
---|---|---|---|
0 | total | 1998-03-31 | 84503 |
1 | total | 1998-06-30 | 65312 |
2 | total | 1998-09-30 | 72753 |
3 | total | 1998-12-31 | 70880 |
4 | total | 1999-03-31 | 86893 |
… | … | … | … |
3191 | nt-oth-noncity | 2003-12-31 | 132 |
3192 | nt-oth-noncity | 2004-03-31 | 12 |
3193 | nt-oth-noncity | 2004-06-30 | 40 |
3194 | nt-oth-noncity | 2004-09-30 | 186 |
3195 | nt-oth-noncity | 2004-12-31 | 144 |
Y_hat_df
for all the series in
Y_df
using StatsForecast’s AutoARIMA
. Additionally we obtain
insample predictions Y_fitted_df
for the methods that require them.
level | metric | AutoARIMA/BottomUp | AutoARIMA/TopDown_method-average_proportions | AutoARIMA/TopDown_method-proportion_averages | AutoARIMA/MinTrace_method-ols | AutoARIMA/MinTrace_method-wls_var | AutoARIMA/MinTrace_method-mint_shrink | AutoARIMA/ERM_method-closed_lambda_reg-0.01 | |
---|---|---|---|---|---|---|---|---|---|
0 | Country | msse | 1.777±0.0 | 2.488±0.0 | 2.488±0.0 | 2.752±0.0 | 2.569±0.0 | 2.775±0.0 | 3.427±0.0 |
2 | Country/Purpose | msse | 1.726±0.0 | 3.181±0.0 | 3.169±0.0 | 2.184±0.0 | 1.876±0.0 | 1.96±0.0 | 3.067±0.0 |
4 | Country/Purpose/State | msse | 0.881±0.0 | 1.657±0.0 | 1.652±0.0 | 0.98±0.0 | 0.857±0.0 | 0.867±0.0 | 1.559±0.0 |
6 | Country/Purpose/State/CityNonCity | msse | 0.95±0.0 | 1.271±0.0 | 1.269±0.0 | 1.033±0.0 | 0.903±0.0 | 0.912±0.0 | 1.635±0.0 |
8 | Overall | msse | 0.973±0.0 | 1.492±0.0 | 1.488±0.0 | 1.087±0.0 | 0.951±0.0 | 0.966±0.0 | 1.695±0.0 |
1 | Country | scaled_crps | 0.043±0.0009 | 0.048±0.0006 | 0.048±0.0006 | 0.05±0.0006 | 0.051±0.0006 | 0.053±0.0006 | 0.054±0.0009 |
3 | Country/Purpose | scaled_crps | 0.077±0.001 | 0.114±0.0003 | 0.112±0.0004 | 0.09±0.0013 | 0.087±0.0009 | 0.089±0.0009 | 0.106±0.0013 |
5 | Country/Purpose/State | scaled_crps | 0.165±0.0009 | 0.249±0.0004 | 0.247±0.0004 | 0.18±0.0018 | 0.169±0.0009 | 0.169±0.0008 | 0.231±0.0021 |
7 | Country/Purpose/State/CityNonCity | scaled_crps | 0.218±0.0013 | 0.289±0.0004 | 0.286±0.0004 | 0.228±0.0018 | 0.217±0.0013 | 0.218±0.0011 | 0.302±0.0033 |
9 | Overall | scaled_crps | 0.193±0.0011 | 0.266±0.0004 | 0.263±0.0004 | 0.205±0.0017 | 0.194±0.0011 | 0.195±0.0009 | 0.268±0.0027 |