Neural/MLForecast
This example notebook demonstrates the compatibility of HierarchicalForecast’s reconciliation methods with popular machine-learning libraries, specifically NeuralForecast and MLForecast.
The notebook utilizes NBEATS and XGBRegressor models to create base forecasts for the TourismLarge Hierarchical Dataset. After that, we use HierarchicalForecast to reconcile the base predictions.
References
- Boris N. Oreshkin, Dmitri Carpov, Nicolas
Chapados, Yoshua Bengio (2019). “N-BEATS: Neural basis expansion
analysis for interpretable time series forecasting”. url:
https://arxiv.org/abs/1905.10437
-
Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’16. San Francisco,
California, USA: Association for Computing Machinery, 2016, pp. 785–794.
isbn: 9781450342322. doi: 10.1145/2939672.2939785. url:
https://doi.org/10.1145/2939672.2939785 (cit. on
p. 26).
You can run these experiments using CPU or GPU with Google Colab.
1. Installing packages
2. Load hierarchical dataset
This detailed Australian Tourism Dataset comes from the National Visitor Survey, managed by the Tourism Research Australia, it is composed of 555 monthly series from 1998 to 2016, it is organized geographically, and purpose of travel. The natural geographical hierarchy comprises seven states, divided further in 27 zones and 76 regions. The purpose of travel categories are holiday, visiting friends and relatives (VFR), business and other. The MinT (Wickramasuriya et al., 2019), among other hierarchical forecasting studies has used the dataset it in the past. The dataset can be accessed in the MinT reconciliation webpage, although other sources are available.
Geographical Division | Number of series per division | Number of series per purpose | Total |
---|---|---|---|
Australia | 1 | 4 | 5 |
States | 7 | 28 | 35 |
Zones | 27 | 108 | 135 |
Regions | 76 | 304 | 380 |
Total | 111 | 444 | 555 |
unique_id | ds | y | |
---|---|---|---|
0 | TotalAll | 1998-01-01 | 45151.071280 |
1 | TotalAll | 1998-02-01 | 17294.699551 |
2 | TotalAll | 1998-03-01 | 20725.114184 |
3 | TotalAll | 1998-04-01 | 25388.612353 |
4 | TotalAll | 1998-05-01 | 20330.035211 |
Visualize the aggregation matrix.
Split the dataframe in train/test splits.
3. Fit and Predict Models
HierarchicalForecast is compatible with many different ML models. Here,
we show two examples:
1. NBEATS, a MLP-based deep neural
architecture.
2. XGBRegressor, a tree-based architecture.
ds | NBEATS | NBEATS-lo-98.0 | NBEATS-lo-96.0 | NBEATS-lo-94.0 | NBEATS-lo-92.0 | NBEATS-lo-90.0 | NBEATS-lo-88.0 | NBEATS-lo-86.0 | NBEATS-lo-84.0 | … | NBEATS-hi-80.0 | NBEATS-hi-82.0 | NBEATS-hi-84.0 | NBEATS-hi-86.0 | NBEATS-hi-88.0 | NBEATS-hi-90.0 | NBEATS-hi-92.0 | NBEATS-hi-94.0 | NBEATS-hi-96.0 | NBEATS-hi-98.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unique_id | |||||||||||||||||||||
TotalAll | 2016-01-01 | 44525.652344 | 21232.554688 | 26024.839844 | 27435.285156 | 28136.705078 | 28766.150391 | 29569.240234 | 30344.240234 | 31163.099609 | … | 51812.953125 | 52171.792969 | 52628.562500 | 52890.750000 | 53160.312500 | 54025.210938 | 54451.109375 | 55651.007812 | 57686.027344 | 61461.066406 |
TotalAll | 2016-02-01 | 20819.431641 | 18020.289062 | 18314.943359 | 18480.269531 | 18612.464844 | 18695.382812 | 18807.242188 | 18912.910156 | 19027.187500 | … | 22719.998047 | 22802.921875 | 22887.734375 | 23031.005859 | 23133.865234 | 23230.322266 | 23406.496094 | 23622.166016 | 23887.796875 | 24165.496094 |
TotalAll | 2016-03-01 | 23676.291016 | 19303.222656 | 19684.693359 | 19928.400391 | 20150.691406 | 20319.113281 | 20499.980469 | 20632.185547 | 20748.207031 | … | 26215.312500 | 26291.195312 | 26402.853516 | 26578.257812 | 26848.179688 | 27054.107422 | 27310.746094 | 27723.867188 | 28211.294922 | 29011.082031 |
TotalAll | 2016-04-01 | 27978.587891 | 23936.988281 | 24329.892578 | 24532.740234 | 24735.703125 | 24902.812500 | 25165.074219 | 25256.669922 | 25489.455078 | … | 30192.365234 | 30278.451172 | 30339.017578 | 30381.443359 | 30465.722656 | 30574.056641 | 30682.609375 | 30860.427734 | 31032.648438 | 31199.992188 |
TotalAll | 2016-05-01 | 22810.310547 | 20037.218750 | 20194.531250 | 20387.541016 | 20510.244141 | 20594.226562 | 20675.720703 | 20767.025391 | 20876.550781 | … | 24975.916016 | 25149.097656 | 25240.177734 | 25401.996094 | 25577.400391 | 25800.574219 | 26132.904297 | 26559.906250 | 27273.566406 | 28567.857422 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
GBDOth | 2016-08-01 | 3.384338 | -31.891897 | -15.230768 | -1.954657 | -1.143704 | -0.994592 | -0.947800 | -0.884839 | -0.824748 | … | 9.635074 | 10.517044 | 11.374988 | 12.784556 | 14.568413 | 22.581669 | 37.880905 | 51.512486 | 62.645977 | 81.495415 |
GBDOth | 2016-09-01 | 4.842800 | -41.682514 | -23.578377 | -6.487054 | -1.238661 | -1.024779 | -0.927368 | -0.856639 | -0.758568 | … | 11.743630 | 12.755230 | 14.384780 | 16.579344 | 19.425726 | 36.155537 | 44.394543 | 60.144749 | 78.533859 | 101.363129 |
GBDOth | 2016-10-01 | 4.466261 | -21.124041 | -1.662255 | -1.157058 | -0.949211 | -0.857361 | -0.755605 | -0.699540 | -0.659419 | … | 10.405193 | 11.605769 | 12.686687 | 14.218900 | 19.963741 | 26.705273 | 34.361160 | 51.898552 | 68.361931 | 89.458908 |
GBDOth | 2016-11-01 | 3.689114 | -22.615982 | -11.813770 | -1.530864 | -1.049960 | -0.922807 | -0.868391 | -0.802971 | -0.723462 | … | 8.213260 | 8.837670 | 10.219457 | 12.300932 | 13.135829 | 23.325760 | 37.628525 | 43.993382 | 63.594315 | 84.825226 |
GBDOth | 2016-12-01 | 3.994789 | -38.856083 | -24.361221 | -7.503808 | -1.199999 | -1.003695 | -0.880594 | -0.788414 | -0.737489 | … | 9.881157 | 11.406334 | 12.636977 | 15.831536 | 26.059269 | 32.270000 | 37.316460 | 51.765774 | 68.933304 | 91.916100 |
ds | XGBRegressor | XGBRegressor-lo-98 | XGBRegressor-lo-96 | XGBRegressor-lo-94 | XGBRegressor-lo-92 | XGBRegressor-lo-90 | XGBRegressor-lo-88 | XGBRegressor-lo-86 | XGBRegressor-lo-84 | … | XGBRegressor-hi-80 | XGBRegressor-hi-82 | XGBRegressor-hi-84 | XGBRegressor-hi-86 | XGBRegressor-hi-88 | XGBRegressor-hi-90 | XGBRegressor-hi-92 | XGBRegressor-hi-94 | XGBRegressor-hi-96 | XGBRegressor-hi-98 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unique_id | |||||||||||||||||||||
TotalAll | 2016-01-01 | 43060.226562 | 38276.974483 | 38677.670530 | 39078.366577 | 39479.062624 | 39879.758671 | 40009.218877 | 40041.809140 | 40074.399403 | … | 45980.873195 | 46013.463459 | 46046.053722 | 46078.643985 | 46111.234248 | 46240.694454 | 46641.390501 | 47042.086548 | 47442.782595 | 47843.478642 |
TotalAll | 2016-02-01 | 18008.296875 | 14687.962868 | 14813.816467 | 14939.670066 | 15065.523666 | 15191.377265 | 15247.400539 | 15278.484410 | 15309.568281 | … | 20644.857726 | 20675.941597 | 20707.025469 | 20738.109340 | 20769.193211 | 20825.216485 | 20951.070084 | 21076.923684 | 21202.777283 | 21328.630882 |
TotalAll | 2016-03-01 | 20694.080078 | 16407.351099 | 16594.149043 | 16780.946987 | 16967.744931 | 17154.542875 | 17209.434677 | 17217.217141 | 17224.999606 | … | 24147.595620 | 24155.378085 | 24163.160550 | 24170.943015 | 24178.725480 | 24233.617281 | 24420.415225 | 24607.213169 | 24794.011113 | 24980.809057 |
TotalAll | 2016-04-01 | 24474.349609 | 20859.120558 | 20978.737726 | 21098.354893 | 21217.972060 | 21337.589227 | 21380.287167 | 21395.513953 | 21410.740739 | … | 27507.504906 | 27522.731693 | 27537.958479 | 27553.185266 | 27568.412052 | 27611.109991 | 27730.727159 | 27850.344326 | 27969.961493 | 28089.578660 |
TotalAll | 2016-05-01 | 19281.087891 | 15045.235849 | 15460.108990 | 15874.982131 | 16289.855271 | 16704.728412 | 16861.927796 | 16927.100837 | 16992.273878 | … | 21439.555822 | 21504.728863 | 21569.901904 | 21635.074945 | 21700.247986 | 21857.447369 | 22272.320510 | 22687.193651 | 23102.066792 | 23516.939933 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
GBDOth | 2016-08-01 | 11.040442 | -0.720264 | 0.934877 | 2.590017 | 4.245157 | 5.900298 | 6.396993 | 6.479957 | 6.562921 | … | 15.352035 | 15.435000 | 15.517964 | 15.600928 | 15.683892 | 16.180587 | 17.835727 | 19.490868 | 21.146008 | 22.801149 |
GBDOth | 2016-09-01 | 6.440751 | -0.275863 | -0.182214 | -0.088566 | 0.005083 | 0.098732 | 0.123376 | 0.123376 | 0.123376 | … | 12.758126 | 12.758126 | 12.758126 | 12.758126 | 12.758126 | 12.782771 | 12.876419 | 12.970068 | 13.063716 | 13.157365 |
GBDOth | 2016-10-01 | 9.995112 | 2.407870 | 2.407870 | 2.407870 | 2.407870 | 2.407870 | 2.407870 | 2.407870 | 2.407870 | … | 17.582355 | 17.582355 | 17.582355 | 17.582355 | 17.582355 | 17.582355 | 17.582355 | 17.582355 | 17.582355 | 17.582355 |
GBDOth | 2016-11-01 | 6.747566 | 2.791389 | 2.791389 | 2.791389 | 2.791389 | 2.791389 | 2.791389 | 2.791389 | 2.791389 | … | 10.703742 | 10.703742 | 10.703742 | 10.703742 | 10.703742 | 10.703742 | 10.703742 | 10.703742 | 10.703742 | 10.703742 |
GBDOth | 2016-12-01 | 7.367904 | 2.349200 | 2.349200 | 2.349200 | 2.349200 | 2.349200 | 2.349200 | 2.349200 | 2.349200 | … | 12.386609 | 12.386609 | 12.386609 | 12.386609 | 12.386609 | 12.386609 | 12.386609 | 12.386609 | 12.386609 | 12.386609 |
4. Reconcile Predictions
With minimal parsing, we can reconcile the raw output predictions with different HierarchicalForecast reconciliation methods.
5. Evaluation
To evaluate we use a scaled variation of the CRPS, as proposed by
Rangapuram (2021), to measure the accuracy of predicted quantiles
y_hat
compared to the observation y
.