HierarchicalForecast
has tools to create time series for all hierarchies and also allows you
to calculate prediction intervals for all hierarchies. In this notebook
we will see how to do it.
Country | Region | State | Purpose | ds | y | |
---|---|---|---|---|---|---|
0 | Australia | Adelaide | South Australia | Business | 1998-01-01 | 135.077690 |
1 | Australia | Adelaide | South Australia | Business | 1998-04-01 | 109.987316 |
2 | Australia | Adelaide | South Australia | Business | 1998-07-01 | 166.034687 |
3 | Australia | Adelaide | South Australia | Business | 1998-10-01 | 127.160464 |
4 | Australia | Adelaide | South Australia | Business | 1999-01-01 | 137.448533 |
aggregate
function from HierarchicalForecast
we can get the full set of time
series.
unique_id | ds | y | |
---|---|---|---|
0 | Australia | 1998-01-01 | 23182.197269 |
1 | Australia | 1998-04-01 | 20323.380067 |
2 | Australia | 1998-07-01 | 19826.640511 |
3 | Australia | 1998-10-01 | 20830.129891 |
4 | Australia | 1999-01-01 | 22087.353380 |
unique_id | Australia/ACT/Canberra | Australia/New South Wales/Blue Mountains | Australia/New South Wales/Capital Country | Australia/New South Wales/Central Coast | |
---|---|---|---|---|---|
0 | Australia | 1.0 | 1.0 | 1.0 | 1.0 |
1 | Australia/ACT | 1.0 | 0.0 | 0.0 | 0.0 |
2 | Australia/New South Wales | 0.0 | 1.0 | 1.0 | 1.0 |
3 | Australia/Northern Territory | 0.0 | 0.0 | 0.0 | 0.0 |
4 | Australia/Queensland | 0.0 | 0.0 | 0.0 | 0.0 |
S
matrix and the data using the
HierarchicalPlot
class as follows.
Y_df
using the AutoARIMA
and model. Observe that Y_hat_df
contains the forecasts but they are not coherent. To reconcile the
prediction intervals we need to calculate the uncoherent intervals using
the level
argument of StatsForecast
.
HierarchicalReconciliation
class. In this example we use
BottomUp
and
MinTrace
.
If you want to calculate prediction intervals, you have to use the
level
argument as follows and also intervals_method='permbu'
.
Y_rec_df
contains the reconciled forecasts.
unique_id | ds | AutoARIMA | AutoARIMA-lo-90 | AutoARIMA-lo-80 | AutoARIMA-hi-80 | AutoARIMA-hi-90 | AutoARIMA/BottomUp | AutoARIMA/BottomUp-lo-90 | AutoARIMA/BottomUp-lo-80 | … | AutoARIMA/MinTrace_method-mint_shrink | AutoARIMA/MinTrace_method-mint_shrink-lo-90 | AutoARIMA/MinTrace_method-mint_shrink-lo-80 | AutoARIMA/MinTrace_method-mint_shrink-hi-80 | AutoARIMA/MinTrace_method-mint_shrink-hi-90 | AutoARIMA/MinTrace_method-ols | AutoARIMA/MinTrace_method-ols-lo-90 | AutoARIMA/MinTrace_method-ols-lo-80 | AutoARIMA/MinTrace_method-ols-hi-80 | AutoARIMA/MinTrace_method-ols-hi-90 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Australia | 2016-01-01 | 26212.553553 | 24705.948180 | 25038.715077 | 27386.392029 | 27719.158927 | 24955.501571 | 24143.056131 | 24387.230200 | … | 25413.657606 | 24705.682710 | 24905.677772 | 25928.334367 | 26050.232961 | 26142.818016 | 25525.081721 | 25656.537995 | 26606.345032 | 26832.423921 |
1 | Australia | 2016-04-01 | 25033.667125 | 23337.267588 | 23711.954696 | 26355.379554 | 26730.066662 | 23421.312868 | 22762.045247 | 22904.087197 | … | 24058.906411 | 23486.828548 | 23627.152623 | 24659.405484 | 24847.778503 | 24946.338649 | 24297.061230 | 24434.805048 | 25535.549040 | 25640.659918 |
2 | Australia | 2016-07-01 | 24507.027198 | 22640.028798 | 23052.396413 | 25961.657983 | 26374.025599 | 22807.706826 | 22065.402373 | 22223.120404 | … | 23438.863893 | 22672.658701 | 22888.299153 | 23971.724733 | 24179.548677 | 24407.245003 | 23712.841797 | 23834.054327 | 25027.073615 | 25189.869286 |
3 | Australia | 2016-10-01 | 25598.928613 | 23575.665243 | 24022.547410 | 27175.309816 | 27622.191983 | 23471.845870 | 22677.593575 | 22892.328939 | … | 24322.049398 | 23619.419712 | 23682.803746 | 24847.299228 | 25028.345572 | 25496.855604 | 24740.210465 | 24923.560783 | 26094.250414 | 26273.617732 |
4 | Australia | 2017-01-01 | 26982.576796 | 24669.535238 | 25180.421285 | 28784.732308 | 29295.618354 | 24668.735931 | 23760.842072 | 23964.283124 | … | 25520.163549 | 24720.304392 | 24910.106650 | 26170.552678 | 26347.181903 | 26853.231907 | 26045.213677 | 26149.753374 | 27502.499674 | 27733.985566 |