Multiple series forecasting
TimeGPT provides a robust solution for multi-series forecasting, which involves analyzing multiple data series concurrently, rather than a single one. The tool can be fine-tuned using a broad collection of series, enabling you to tailor the model to suit your specific needs or tasks.
Note that the forecasts are still univariate. This means that although TimeGPT is a global model, it won’t consider the inter-feature relationships within the target series. However, TimeGPT does support the use of exogenous variables such as categorical variables (e.g., category, brand), numerical variables (e.g., temperature, prices), or even special holidays.
Let’s see this in action.
1. Import packages
First, we install and import the required packages and initialize the Nixtla client.
As always, we start off by intializing an instance of NixtlaClient
.
👍 Use an Azure AI endpoint
To use an Azure AI endpoint, remember to set also the
base_url
argument:
nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
2. Load the data
The following dataset contains prices of different electricity markets in Europe.
Mutliple series are automatically detected in TimeGPT using the
unique_id
column. This column contains labels for each series. If
there are multiple unique values in that column, then it knows it is
handling a multi-series scneario.
In this particular case, the unique_id
column contains the value BE,
DE, FR, JPM, and NP.
unique_id | ds | y | |
---|---|---|---|
0 | BE | 2016-12-01 00:00:00 | 72.00 |
1 | BE | 2016-12-01 01:00:00 | 65.80 |
2 | BE | 2016-12-01 02:00:00 | 59.99 |
3 | BE | 2016-12-01 03:00:00 | 50.69 |
4 | BE | 2016-12-01 04:00:00 | 52.58 |
Let’s plot this series using
NixtlaClient
:
3. Forecasting Multiple Series
To forecast all series at once, we simply pass the dataframe to the df
argument. TimeGPt will automatically forecast all series.
unique_id | ds | TimeGPT | TimeGPT-lo-90 | TimeGPT-lo-80 | TimeGPT-hi-80 | TimeGPT-hi-90 | |
---|---|---|---|---|---|---|---|
0 | BE | 2016-12-31 00:00:00 | 46.151176 | 36.660478 | 38.337019 | 53.965334 | 55.641875 |
1 | BE | 2016-12-31 01:00:00 | 42.426598 | 31.602231 | 33.976724 | 50.876471 | 53.250964 |
2 | BE | 2016-12-31 02:00:00 | 40.242889 | 30.439970 | 33.634985 | 46.850794 | 50.045809 |
3 | BE | 2016-12-31 03:00:00 | 38.265339 | 26.841481 | 31.022093 | 45.508585 | 49.689197 |
4 | BE | 2016-12-31 04:00:00 | 36.618801 | 18.541384 | 27.981346 | 45.256256 | 54.696218 |
📘 Available models in Azure AI
If you are using an Azure AI endpoint, please be sure to set
model="azureai"
:
nixtla_client.forecast(..., model="azureai")
For the public API, we support two models:
timegpt-1
andtimegpt-1-long-horizon
.By default,
timegpt-1
is used. Please see this tutorial on how and when to usetimegpt-1-long-horizon
.
From the figure above, we can see that the model effectively generated predictions for each unique series in the dataset.
Historical forecast
You can also compute prediction intervals for historical forecasts
adding the add_history=True
.
To specify the confidence interval, we use the level
argument. Here,
we pass the list [80, 90]
. This will compute a 80% and 90% confidence
interval.
unique_id | ds | TimeGPT | TimeGPT-lo-80 | TimeGPT-lo-90 | TimeGPT-hi-80 | TimeGPT-hi-90 | |
---|---|---|---|---|---|---|---|
0 | BE | 2016-12-06 00:00:00 | 55.756332 | 42.066476 | 38.185593 | 69.446188 | 73.327072 |
1 | BE | 2016-12-06 01:00:00 | 52.820206 | 39.130350 | 35.249466 | 66.510062 | 70.390946 |
2 | BE | 2016-12-06 02:00:00 | 46.851070 | 33.161214 | 29.280331 | 60.540926 | 64.421810 |
3 | BE | 2016-12-06 03:00:00 | 50.640892 | 36.951036 | 33.070152 | 64.330748 | 68.211632 |
4 | BE | 2016-12-06 04:00:00 | 52.420410 | 38.730554 | 34.849670 | 66.110266 | 69.991150 |
📘 Available models in Azure AI
If you are using an Azure AI endpoint, please be sure to set
model="azureai"
:
nixtla_client.forecast(..., model="azureai")
For the public API, we support two models:
timegpt-1
andtimegpt-1-long-horizon
.By default,
timegpt-1
is used. Please see this tutorial on how and when to usetimegpt-1-long-horizon
.
In the figure above, we now see the historical predictions made by TimeGPT for each series, along with the 80% and 90% confidence intervals.