Skip to main content

rolling_mean

rolling_mean(x, window_size, min_samples=None, skipna=False)
Compute the rolling_mean of the input array. Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the rolling statistic

rolling_std

rolling_std(x, window_size, min_samples=None, skipna=False)
Compute the rolling_std of the input array. Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the rolling statistic

rolling_min

rolling_min(x, window_size, min_samples=None, skipna=False)
Compute the rolling_min of the input array. Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the rolling statistic

rolling_max

rolling_max(x, window_size, min_samples=None, skipna=False)
Compute the rolling_max of the input array. Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the rolling statistic

rolling_quantile

rolling_quantile(x, p, window_size, min_samples=None, skipna=False)
Compute the rolling_quantile of the input array. Parameters:
NameTypeDescriptionDefault
xndarrayInput array.required
pfloatQuantile to compute.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.None
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.False
Returns:
TypeDescription
ndarraynp.ndarray: Array with rolling statistic

seasonal_rolling_mean

seasonal_rolling_mean(x, season_length, window_size, min_samples=None, skipna=False)
Compute the seasonal_rolling_mean of the input array Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
season_lengthintThe length of the seasonal period.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the seasonal rolling statistic

seasonal_rolling_std

seasonal_rolling_std(x, season_length, window_size, min_samples=None, skipna=False)
Compute the seasonal_rolling_std of the input array Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
season_lengthintThe length of the seasonal period.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the seasonal rolling statistic

seasonal_rolling_min

seasonal_rolling_min(x, season_length, window_size, min_samples=None, skipna=False)
Compute the seasonal_rolling_min of the input array Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
season_lengthintThe length of the seasonal period.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the seasonal rolling statistic

seasonal_rolling_max

seasonal_rolling_max(x, season_length, window_size, min_samples=None, skipna=False)
Compute the seasonal_rolling_max of the input array Parameters:
NameTypeDescriptionDefault
xnp.ndarrayInput array.required
season_lengthintThe length of the seasonal period.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.required
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.required
Returns:
TypeDescription
np.ndarray: Array with the seasonal rolling statistic

seasonal_rolling_quantile

seasonal_rolling_quantile(x, p, season_length, window_size, min_samples=None, skipna=False)
Compute the seasonal_rolling_quantile of the input array. Parameters:
NameTypeDescriptionDefault
xndarrayInput array.required
pfloatQuantile to compute.required
season_lengthintThe length of the seasonal period.required
window_sizeintThe size of the rolling window.required
min_samplesintThe minimum number of samples required to compute the statistic. If None, it is set to window_size.None
skipnaboolExclude NaN values from calculations. When False (default), any NaN value in the window causes the result to be NaN. When True, NaN values are ignored and statistics are computed on remaining valid values in the window. Defaults to False for backwards compatibility.False
Returns:
TypeDescription
ndarraynp.ndarray: Array with rolling statistic