module coreforecast.rolling
function rolling_mean
x(np.ndarray): Input array.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the rolling statistic
function rolling_std
x(np.ndarray): Input array.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the rolling statistic
function rolling_min
x(np.ndarray): Input array.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the rolling statistic
function rolling_max
x(np.ndarray): Input array.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the rolling statistic
function rolling_quantile
x(np.ndarray): Input array.q(float): Quantile to compute.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with rolling statistic
function seasonal_rolling_mean
x(np.ndarray): Input array.season_length(int): The length of the seasonal period.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the seasonal rolling statistic
function seasonal_rolling_std
x(np.ndarray): Input array.season_length(int): The length of the seasonal period.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the seasonal rolling statistic
function seasonal_rolling_min
x(np.ndarray): Input array.season_length(int): The length of the seasonal period.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the seasonal rolling statistic
function seasonal_rolling_max
x(np.ndarray): Input array.season_length(int): The length of the seasonal period.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with the seasonal rolling statistic
function seasonal_rolling_quantile
x(np.ndarray): Input array.q(float): Quantile to compute.season_length(int): The length of the seasonal period.window_size(int): The size of the rolling window.min_samples(int, optional): The minimum number of samples required to compute the statistic. If None, it is set towindow_size.
np.ndarray: Array with rolling statistic
This file was automatically generated via lazydocs.

