module coreforecast.lag_transforms


class Lag

Simple lag operator

Args:

  • lag (int): Number of periods to offset

method __init__

__init__(lag: int)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class RollingMean

Rolling Mean

Args:

  • lag (int): Number of periods to offset by before applying the transformation.
  • window_size (int): Length of the rolling window.
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(lag: int, window_size: int, min_samples: Optional[int] = None)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class RollingStd

Rolling Standard Deviation

Args:

  • lag (int): Number of periods to offset by before applying the transformation.
  • window_size (int): Length of the rolling window.
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(lag: int, window_size: int, min_samples: Optional[int] = None)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class RollingMin

Rolling Minimum

Args:

  • lag (int): Number of periods to offset by before applying the transformation.
  • window_size (int): Length of the rolling window.
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(lag: int, window_size: int, min_samples: Optional[int] = None)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class RollingMax

Rolling Maximum

Args:

  • lag (int): Number of periods to offset by before applying the transformation.
  • window_size (int): Length of the rolling window.
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(lag: int, window_size: int, min_samples: Optional[int] = None)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class RollingQuantile

Rolling quantile

Args:

  • lag (int): Number of periods to offset by before applying the transformation
  • p (float): Quantile to compute
  • window_size (int): Length of the rolling window
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(
    lag: int,
    p: float,
    window_size: int,
    min_samples: Optional[int] = None
)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class SeasonalRollingMean

Seasonal rolling Mean

Args:

  • lag (int): Number of periods to offset by before applying the transformation
  • season_length (int): Length of the seasonal period, e.g. 7 for weekly data
  • window_size (int): Length of the rolling window
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(
    lag: int,
    season_length: int,
    window_size: int,
    min_samples: Optional[int] = None
)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class SeasonalRollingStd

Seasonal rolling Standard Deviation

Args:

  • lag (int): Number of periods to offset by before applying the transformation
  • season_length (int): Length of the seasonal period, e.g. 7 for weekly data
  • window_size (int): Length of the rolling window
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(
    lag: int,
    season_length: int,
    window_size: int,
    min_samples: Optional[int] = None
)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class SeasonalRollingMin

Seasonal rolling Minimum

Args:

  • lag (int): Number of periods to offset by before applying the transformation
  • season_length (int): Length of the seasonal period, e.g. 7 for weekly data
  • window_size (int): Length of the rolling window
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(
    lag: int,
    season_length: int,
    window_size: int,
    min_samples: Optional[int] = None
)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class SeasonalRollingMax

Seasonal rolling Maximum

Args:

  • lag (int): Number of periods to offset by before applying the transformation
  • season_length (int): Length of the seasonal period, e.g. 7 for weekly data
  • window_size (int): Length of the rolling window
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(
    lag: int,
    season_length: int,
    window_size: int,
    min_samples: Optional[int] = None
)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class SeasonalRollingQuantile

Seasonal rolling statistic

Args:

  • lag (int): Number of periods to offset by before applying the transformation
  • p (float): Quantile to compute
  • season_length (int): Length of the seasonal period, e.g. 7 for weekly data
  • window_size (int): Length of the rolling window
  • min_samples (int, optional): Minimum number of samples required to compute the statistic. If None, defaults to window_size.

method __init__

__init__(
    lag: int,
    p: float,
    season_length: int,
    window_size: int,
    min_samples: Optional[int] = None
)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class ExpandingMean

Expanding Mean

Args:

  • lag (int): Number of periods to offset by before applying the transformation

method __init__

__init__(lag: int)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(idxs: ndarray) → _ExpandingBase

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class ExpandingStd

Expanding Standard Deviation

Args:

  • lag (int): Number of periods to offset by before applying the transformation

method __init__

__init__(lag: int)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(idxs: ndarray) → _ExpandingBase

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class ExpandingMin

Expanding Minimum

Args:

  • lag (int): Number of periods to offset by before applying the transformation

method __init__

__init__(lag: int)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(idxs: ndarray) → _ExpandingBase

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class ExpandingMax

Expanding Maximum

Args:

  • lag (int): Number of periods to offset by before applying the transformation

method __init__

__init__(lag: int)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(idxs: ndarray) → _ExpandingBase

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class ExpandingQuantile

Expanding quantile

Args: lag (int): Number of periods to offset by before applying the transformation p (float): Quantile to compute

method __init__

__init__(lag: int, p: float)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(_idxs: ndarray) → _BaseLagTransform

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

class ExponentiallyWeightedMean

Exponentially weighted mean

Args:

  • lag (int): Number of periods to offset by before applying the transformation
  • alpha (float): Smoothing factor

method __init__

__init__(lag: int, alpha: float)

method stack

stack(transforms: Sequence[ForwardRef('_BaseLagTransform')]) → _BaseLagTransform

method take

take(idxs: ndarray) → ExponentiallyWeightedMean

method transform

transform(ga: GroupedArray) → ndarray

method update

update(ga: GroupedArray) → ndarray

This file was automatically generated via lazydocs.