Skip to main content

Lag

Lag(lag)
Bases: _BaseLagTransform Simple lag operator Parameters:
NameTypeDescriptionDefault
lagintNumber of periods to offsetrequired

Lag.stack

stack(transforms)

Lag.take

take(_idxs)

Lag.transform

transform(ga)

Lag.update

update(ga)

RollingMean

Bases: _RollingBase

RollingMean.stack

stack(transforms)

RollingMean.take

take(_idxs)

RollingMean.transform

transform(ga)

RollingMean.update

update(ga)

RollingStd

Bases: _RollingBase

RollingStd.stack

stack(transforms)

RollingStd.take

take(_idxs)

RollingStd.transform

transform(ga)

RollingStd.update

update(ga)

RollingMin

Bases: _RollingBase

RollingMin.stack

stack(transforms)

RollingMin.take

take(_idxs)

RollingMin.transform

transform(ga)

RollingMin.update

update(ga)

RollingMax

Bases: _RollingBase

RollingMax.stack

stack(transforms)

RollingMax.take

take(_idxs)

RollingMax.transform

transform(ga)

RollingMax.update

update(ga)

RollingQuantile

RollingQuantile(lag, p, window_size, min_samples=None)
Bases: _RollingBase Rolling quantile Parameters:
NameTypeDescriptionDefault
lagintNumber of periods to offset by before applying the transformationrequired
pfloatQuantile to computerequired
window_sizeintLength of the rolling windowrequired
min_samplesintMinimum number of samples required to compute the statistic. If None, defaults to window_size.None

RollingQuantile.stack

stack(transforms)

RollingQuantile.take

take(_idxs)

RollingQuantile.transform

transform(ga)

RollingQuantile.update

update(ga)

SeasonalRollingMean

Bases: _SeasonalRollingBase

SeasonalRollingMean.stack

stack(transforms)

SeasonalRollingMean.take

take(_idxs)

SeasonalRollingMean.transform

transform(ga)

SeasonalRollingMean.update

update(ga)

SeasonalRollingStd

Bases: _SeasonalRollingBase

SeasonalRollingStd.stack

stack(transforms)

SeasonalRollingStd.take

take(_idxs)

SeasonalRollingStd.transform

transform(ga)

SeasonalRollingStd.update

update(ga)

SeasonalRollingMin

Bases: _SeasonalRollingBase

SeasonalRollingMin.stack

stack(transforms)

SeasonalRollingMin.take

take(_idxs)

SeasonalRollingMin.transform

transform(ga)

SeasonalRollingMin.update

update(ga)

SeasonalRollingMax

Bases: _SeasonalRollingBase

SeasonalRollingMax.stack

stack(transforms)

SeasonalRollingMax.take

take(_idxs)

SeasonalRollingMax.transform

transform(ga)

SeasonalRollingMax.update

update(ga)

SeasonalRollingQuantile

SeasonalRollingQuantile(lag, p, season_length, window_size, min_samples=None)
Bases: _SeasonalRollingBase Seasonal rolling statistic Parameters:
NameTypeDescriptionDefault
lagintNumber of periods to offset by before applying the transformationrequired
pfloatQuantile to computerequired
season_lengthintLength of the seasonal period, e.g. 7 for weekly datarequired
window_sizeintLength of the rolling windowrequired
min_samplesintMinimum number of samples required to compute the statistic. If None, defaults to window_size.None

SeasonalRollingQuantile.stack

stack(transforms)

SeasonalRollingQuantile.take

take(_idxs)

SeasonalRollingQuantile.transform

transform(ga)

SeasonalRollingQuantile.update

update(ga)

ExpandingMean

Bases: _ExpandingBase

ExpandingMean.stack

stack(transforms)

ExpandingMean.take

take(idxs)

ExpandingMean.transform

transform(ga)

ExpandingMean.update

update(ga)

ExpandingStd

Bases: _ExpandingBase

ExpandingStd.stack

stack(transforms)

ExpandingStd.take

take(idxs)

ExpandingStd.transform

transform(ga)

ExpandingStd.update

update(ga)

ExpandingMin

Bases: _ExpandingComp

ExpandingMin.stack

stack(transforms)

ExpandingMin.take

take(idxs)

ExpandingMin.transform

transform(ga)

ExpandingMin.update

update(ga)

ExpandingMax

Bases: _ExpandingComp

ExpandingMax.stack

stack(transforms)

ExpandingMax.take

take(idxs)

ExpandingMax.transform

transform(ga)

ExpandingMax.update

update(ga)

ExpandingQuantile

ExpandingQuantile(lag, p)
Bases: _BaseLagTransform Expanding quantile Parameters:
NameTypeDescriptionDefault
lagintNumber of periods to offset by before applying the transformationrequired
pfloatQuantile to computerequired

ExpandingQuantile.stack

stack(transforms)

ExpandingQuantile.take

take(_idxs)

ExpandingQuantile.transform

transform(ga)

ExpandingQuantile.update

update(ga)

ExponentiallyWeightedMean

ExponentiallyWeightedMean(lag, alpha)
Bases: _BaseLagTransform Exponentially weighted mean Parameters:
NameTypeDescriptionDefault
lagintNumber of periods to offset by before applying the transformationrequired
alphafloatSmoothing factorrequired

ExponentiallyWeightedMean.stack

stack(transforms)

ExponentiallyWeightedMean.take

take(idxs)

ExponentiallyWeightedMean.transform

transform(ga)

ExponentiallyWeightedMean.update

update(ga)