ETTm2
ETTm1
ETTh2
ETTh1
ECL
Exchange
TrafficL
- Lai, G., Chang, W., Yang, Y., and Liu, H. Modeling Long and Short-Term Temporal Patterns with Deep Neural Networks. SIGIR 2018.
- Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decomposition Transformers with auto-correlation for long-term series forecasting. NeurIPS 2021..
ILI
Weather
LongHorizon
- Each set is normalized with the train data mean and standard deviation.
- Datasets are partitioned into train, validation and test splits.
- For all datasets: 70%, 10%, and 20% of observations are train, validation, test, except ETT that uses 20% validation.
LongHorizon.download
| Name | Type | Description | Default |
|---|---|---|---|
directory | str | Directory path to download dataset. | required |
LongHorizon.load
Returns:
| Type | Description |
|---|---|
Tuple[DataFrame, Optional[DataFrame], Optional[DataFrame]] | Tuple[pd.DataFrame, Optional[pd.DataFrame], Optional[pd.DataFrame]]: Target time series with columns [‘unique_id’, ‘ds’, ‘y’], Exogenous time series with columns [‘unique_id’, ‘ds’, ‘y’], Static exogenous variables with columns [‘unique_id’, ‘ds’] and static variables. |

