Labour),
SF Bay Area daily Traffic
(Traffic,
OldTraffic),
Quarterly Australian Tourism Visits
(TourismSmall),
Monthly Australian Tourism visits
(TourismLarge,
OldTourismLarge),
and daily Wikipedia article views
(Wiki2).
Old datasets favor the original datasets with minimal target variable
preprocessing (Rangapuram et al. [2021], Olivares et al. [2023]),
while the remaining datasets follow PROFHIT experimental settings.
References
- Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis,
Pedro Mercado, Jan Gasthaus, Tim Januschowski. (2021). “End-to-End
Learning of Coherent Probabilistic Forecasts for Hierarchical Time
Series”. Proceedings of the 38th International Conference on Machine
Learning
(ICML).
- Kin G. Olivares, O. Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei
Cao, Lee Dicker (2022).”Probabilistic Hierarchical Forecasting with
Deep Poisson Mixtures”. International Journal Forecasting, special
issue.
- Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodriguez, Chao
Zhang, and B. Prakash. PROFHIT: Probabilistic robust forecasting for
hierarchical time-series. Computing Research Repository.URL
https://arxiv.org/abs/2206.07940.
source
Labour
source
TourismLarge
source
TourismSmall
source
Traffic
source
Wiki2
source
OldTraffic
source
OldTourismLarge
source
HierarchicalData
Initialize self. See help(type(self)) for accurate signature.

