Datasets
Hierarchical Datasets
Here we host a collection of datasets used in previous hierarchical
research by Rangapuram et al. [2021], Olivares et al. [2023], and
Kamarthi et al. [2022]. The benchmark datasets utilized include
Australian Monthly Labour
(Labour
),
SF Bay Area daily Traffic
(Traffic
,
OldTraffic
),
Quarterly Australian Tourism Visits
(TourismSmall
),
Monthly Australian Tourism visits
(TourismLarge
,
OldTourismLarge
),
and daily Wikipedia article views
(Wiki2
).
Old datasets favor the original datasets with minimal target variable
preprocessing (Rangapuram et al. [2021], Olivares et al. [2023]),
while the remaining datasets follow PROFHIT experimental settings.
References
- Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis,
Pedro Mercado, Jan Gasthaus, Tim Januschowski. (2021). “End-to-End
Learning of Coherent Probabilistic Forecasts for Hierarchical Time
Series”. Proceedings of the 38th International Conference on Machine
Learning
(ICML).
- Kin G. Olivares, O. Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei
Cao, Lee Dicker (2022).”Probabilistic Hierarchical Forecasting with
Deep Poisson Mixtures”. International Journal Forecasting, special
issue.
- Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodriguez, Chao
Zhang, and B. Prakash. PROFHIT: Probabilistic robust forecasting for
hierarchical time-series. Computing Research Repository.URL
https://arxiv.org/abs/2206.07940.
source
Labour
source
TourismLarge
source
TourismSmall
source
Traffic
source
Wiki2
source
OldTraffic
source
OldTourismLarge
source
HierarchicalData
Initialize self. See help(type(self)) for accurate signature.